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Abstract 

Background There is no effective treatment for sepsis-associated acute kidney injury (SA-AKI). Ilofotase alfa (human 
recombinant alkaline phosphatase) has been shown to exert reno-protective properties, although it remains unclear 
which patients might be most likely to benefit. We aimed to identify a clinical phenotype associated with ilofotase 
alfa’s therapeutic efficacy.

Methods Data from 570 out of 650 patients enrolled in the REVIVAL trial were used in a stepwise machine learning 
approach. First, clinical variables with increasing or decreasing risk ratios for ilofotase alfa treatment across quartiles 
for the main secondary endpoint, Major Adverse Kidney Events up to day 90 (MAKE90), were selected. Second, 
linear regression analysis was used to determine the therapeutic effect size. Finally, the top-15 variables were used 
in different clustering analyses with consensus assessment.

Results The optimal clustering model comprised two phenotypes. Phenotype 1 displayed relatively lower disease 
severity scores, and less pronounced renal and pulmonary dysfunction. Phenotype 2 exhibited higher severity scores 
and creatinine, with lower eGFR and bicarbonate levels. Compared with placebo treatment, ilofotase alfa significantly 
reduced MAKE90 events for phenotype 2 patients (54% vs. 68%, p = 0.013), but not for phenotype 1 patients (49% vs. 
46%, p = 0.54).

Conclusion We identified a clinical phenotype comprising severely ill patients with underlying kidney disease 
who benefitted most from ilofotase alfa treatment. This yields insight into the therapeutic potential of this novel 
treatment in more homogeneous patient groups and could guide patient selection in future trials, showing promise 
for personalized medicine in SA-AKI and other complex conditions.
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analysis

Introduction
Sepsis-associated acute kidney injury (SA-AKI) is a 
challenging condition with serious short- and long-term 
consequences [1] and lack of effective treatments [2]. 
The phase 2 ‘STOP-AKI’ trial evaluated the potential of 
ilofotase alfa (human recombinant alkaline phosphatase) 
in 301 SA-AKI patients, showing long-term renal 
function improvements and significantly reduced 
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mortality [3]. Subsequently, the phase 3 global ‘REVIVAL’ 
trial, with 28-day all-cause mortality as the primary 
endpoint, was discontinued early due to futility [4, 5]. 
However, ilofotase alfa did show therapeutic efficacy on 
the main secondary endpoint, Major Adverse Kidney 
Event up to day 90 (MAKE90) [4, 5]. This is consistent 
with findings obtained in two earlier studies using 
bovine alkaline phosphatase [6, 7], and with the STOP-
AKI study results [3]. In addition, patients enrolled in 
REVIVAL who had pre-existent renal impairment, e.g., 
chronic kidney disease (CKD), showed more therapeutic 
efficacy of ilofotase alfa, illustrating the potential 
of a personalized treatment approach [5]. Clinical 
phenotyping is a machine learning-based approach 
which has been shown to identify more homogeneous 
subgroups within diverse patient populations [8, 9]. As 
such, it may resolve patient heterogeneity and provide 
opportunities for personalized treatment approaches.

In the present study, we aimed to identify a clinical phe-
notype associated with ilofotase alfa’s therapeutic efficacy 
in patients enrolled in the REVIVAL trial. This approach 
yields insight into the therapeutic potential of this novel 
treatment in more homogeneous patient groups and may 
aid more precise patient selection for future trials.

Materials and methods
Patients
We performed a post-hoc analysis on patients enrolled 
in the phase 3 REVIVAL trial studying the effects of ilo-
fotase alfa in patients with SA-AKI. In total, 650 patients 
were enrolled into the trial of whom 329 received 1.6 
mg/kg ilofotase alfa and 319 received placebo. The study 
protocol, detailing all in- and exclusion criteria and pro-
cedures, as well as the overall results of the trial were 
previously published [4, 5]. For the current analysis, 
patients with confirmed COVID-19 (n = 33), or those 
who had received renal replacement therapy prior to 
study drug administration (n = 23) were excluded, leaving 
592 patients for further analyses. The ensuing workflow 
is graphically depicted in Additional file  2: Fig. S1 and 
detailed below.

Variable selection
MAKE90 was defined as mortality through day 90, or an 
estimated glomerular filtration rate (eGFR) drop of > 25% 
at day 90 compared to pre-AKI value, or any RRT events 
through day 28 or RRT status at day 90. Forty-four 
numeric variables measured at study inclusion (imme-
diately before study drug administration) were used as 
input for the variable selection algorithm. To select pre-
dicting variables for the therapeutic efficacy of ilofotase 
alfa, the baseline measurements of all variables were first 

categorized into quartiles. For each quartile a risk ratio 
was calculated using the formula:

Here,  Cle is the cumulative incidence of the exposed 
group (ilofotase alfa) and  Clu the cumulative incidence 
of the unexposed group (placebo). Consequently, the 
selected parameters are enriched for a potential rela-
tionship with the therapeutic efficacy of the compound 
(although chance variation may also play a role), thereby 
optimizing the feature selection. If the risk ratios for a 
variable demonstrated a consistent increase or decrease 
(indicating a beneficial effect) in at least three consecu-
tive quartiles, this implied a degree of therapeutic effi-
cacy, and therefore the variable advanced to the next 
step. This selection process yielded 32 variables (Addi-
tional file  3: Table  S1). Next, we gaged the effect size 
of the effect of the selected variables by calculating the 
slope of the sequential increase or decrease in risk ratio 
using linear regression models. For variables that showed 
a consistent increase or decrease in all four consecutive 
quartiles, we calculated two separate slopes (one from 
the first to third quartile and another from the second to 
fourth). Subsequently, slopes were ranked by steepness, 
with steeper slopes implying more pronounced therapeu-
tic efficacy, and the 15 highest ranked variables were used 
for the subsequent clustering analysis (see next section).

Model selection
Models for all possible variable combinations were con-
structed using consensus clustering (ConsensusClus-
teringPlus package) for k-means and Partition Around 
Medoids (PAM) [10]. Patients with more than 50% miss-
ing data in one or more of the variables used in each 
model were excluded prior to clustering. For each model, 
missing data were imputed using the missRanger pack-
age, which employs a chained random forest approach 
[11, 12], and log-transformation, scaling, and center-
ing were applied. Finally, the Bonferroni Outlier Test 
was used to identify and remove outlier patients in each 
model.

To assess each model’s robustness and quality, we 
employed the package’s cluster-consensus score [13]. 
Only models with a score > 0.90 for both phenotypes were 
retained. In retained models, differences in the incidence 
of MAKE90 events between the ilofotase alfa and placebo 
group over time were determined for each phenotype 
using log-rank tests. Models were included in the final 
selection if at least one phenotype showed a significant 
difference in MAKE90 events. From this list, the model 
that illustrated the strongest separation in the phenotype 
displaying a significant benefit for the patient group that 

Risk Ratio =

CIe

CIu
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had received treatment with ilofotase alfa was chosen for 
further analysis.

Statistical analysis
Data are presented as median [interquartile range] or 
number (%). Differences in patient characteristics and 
outcomes between the phenotypes or between ilofotase 
alfa- and placebo-treated patients were tested using 
Mann–Whitney U tests and Chi-squared tests. All analy-
ses were performed in R 3.6.3.

Results
After removal of 22 patients with outlier values, 570 
patients remained available for analysis, of which 358 
(63%) were male, age was 70 [62–76] years, BMI was 28.2 
[24.7–33.3], and APACHE II score was 23 [18–28] (Addi-
tional file 4: Table S2).

The model yielding the optimal fit consisted of k-means 
clustering with 2 phenotypes, including the variables 
APACHE II score, bicarbonate, hematocrit, and lactate 

(Table 1, Additional file 5: Fig. S2). Phenotype 1 (n = 330, 
58%) comprised patients who were less severely ill, 
indicated by significantly lower APACHE II and mSOFA 
disease severity scores and lactate, as well as higher 
eGFR and  PaO2/FiO2 ratios (Table  1, Additional file  4: 
Table S2, Fig. 1A, B). Reciprocally, phenotype 2 (n = 240, 
42%) included patients with more severe disease and 
corresponding laboratory derangements. It should be 
noted that these phenotypes are based on variables 
present at inclusion, and therefore on pre-existing kidney 
function. There were no differences in CKD (assessed by 
pre-AKI eGFR) between the two phenotypes (Additional 
file 4: Table S2).

Overall, patients with phenotype 1 demonstrated a sta-
tistically significantly lower chance for a MAKE90 event 
than those with phenotype 2 (21% and 34%, respectively, 
log-rank p < 0.001, Fig. 1C).

For both phenotypes, the proportion of patients 
who received treatment with ilofotase alfa and those 
who received placebo was virtually equal, and their 

Fig. 1 Phenotype characteristics and outcomes. A Distribution of the two identified phenotypes, B Standardized mean difference (SMD) of all 
clustering variables per phenotype, illustrating how far each variable for that group is removed from the mean of the entire cohort, C Cumulative 
90-day incidence of MAKE events for the two phenotypes. D Cumulative 90-day incidence of MAKE events for ilofotase alfa- and placebo-treated 
patients within the two phenotypes. p values were calculated by log-rank tests
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characteristics were comparable (Table  1). Patients 
exhibiting the more critically ill phenotype 2 showed 
a notable benefit from ilofotase alfa treatment, with a 
MAKE90 event incidence of 68% compared to 54% in the 
placebo group (log-rank p = 0.01, Fig. 1D). This advantage 
was predominantly driven by the receipt of RRT (34% vs 
48% for the placebo group, p = 0.04, Table 1). Conversely, 
patients with phenotype 1 did not show a benefit from 
ilofotase alfa treatment (MAKE90: 49% vs. 46%, log-rank 
p = 0.54).

Discussion
In this study, distinct clinical phenotypes related to a 
renal endpoint and the therapeutic efficacy of a novel 
drug were identified. Patients with phenotype 2, display-
ing more severe disease and corresponding metabolic 
and respiratory impairment, were at the highest risk 
for a MAKE90 event and displayed a clear benefit from 
treatment with ilofotase alfa. For this phenotype, ilo-
fotase alfa treatment was associated with a 14% decrease 
in MAKE90 events, an effect size greater than the 8% 
decrease previously reported in the undifferentiated 
patient population [5].

These results emphasize the potential value of clinical 
phenotyping on baseline characteristics in increasing the 
chances to detect a therapeutic effect. Such an approach 
may facilitate personalized medicine, particularly for 

complex conditions like sepsis and AKI. Directly related 
to the present study, our findings can inform the design 
of future trials investigating ilofotase alfa in patients with 
SA-AKI.

Three limitations deserve attention. First, due to the 
strict inclusion- and exclusion criteria, clinical trials 
such as the REVIVAL study include less variation than 
is observed in normal clinical practice. Therefore, phe-
notyping may lead to more pronounced differentiation 
when used in routine healthcare. Second, implement-
ing our findings to patient selection for trials requires 
a shift away from traditional in- and exclusion criteria. 
The artificial intelligence and machine learning methods 
employed pose challenges in terms of creating under-
standable and usable models for healthcare staff. Lastly, 
being an exploratory study, further external validation 
would be required to ensure robustness of the identified 
phenotypes. Unfortunately, this was currently not feasi-
ble, as ilofotase alfa is a new compound that has thus far 
been studied in only a single phase 3 trial. The dose-find-
ing phase 2 STOP-AKI study population has several limi-
tations, such as an even smaller group of patients treated 
with the therapeutic dose of ilofotase alfa and high miss-
ingness in clustering variables [3].

In conclusion, our study underscores the potential of 
data-driven patient phenotyping in complex conditions 
such as SA-AKI. Identification of patient subgroups 

Table 1 Patient characteristics and outcomes of the different phenotypes and treatment groups

Clinical parameters were measured right before administration of treatment. Underlined parameters were used for clustering. Data are presented as median 
[interquartile range], or number (%). * indicates p = 0.01–0.05, ** indicates p = 0.001–0.01, *** indicates p = 0–0.001 calculated by Mann–Whitney U tests or Chi-square 
tests across both phenotypes

APACHE II: Acute Physiology and Chronic Health Evaluation II, BMI: Body Mass Index, mSOFA: Modified Sequential Organ Failure Assessment, Pre-AKI: Measurements 
taken prior to the onset of AKI. AKI Diagnosis: Measurements taken at the timepoint nearest to the AKI diagnosis, Baseline: Measurements taken at the timepoint 
closest to study inclusion

Phenotype 1 Phenotype 2

Ilofotase alfa (n = 164) Placebo (n = 166) p value Ilofotase alfa (n = 122) Placebo (n = 118) p value

Age (years) 71.00 [64.00, 76.00] 70.00 [61.00, 76.75] 69.00 [61.25, 76.00] 69.50 [60.00, 77.00]

BMI 29.19 [24.41, 33.46] 27.26 [25.13, 34.92] 28.55 [25.38, 32.69] 26.96 [24.57, 32.54]

Sex (% males) 105 (64.0%) 110 (66.3%) 73 (59.8%) 70 (59.3%)

Pre-AKI eGFR (mL/min/1.73 m2) 74.08 [59.77, 90.22] 74.98 [64.29, 89.96] 74.87 [61.59, 87.22] 72.13 [53.99, 86.86]

APACHE II score 19.50 [16.00, 25.00] 21.00 [17.00, 24.25] 27.00 [22.00, 32.00] 26.00 [22.00, 30.75]

mSOFA score 8.00 [7.00, 10.00] 8.00 [7.00, 10.00] 9.00 [8.00, 11.00] 10.00 [9.00, 12.00] **

Bicarbonate (mmol/L) 22.00 [19.62, 24.60] 22.00 [20.00, 24.90] 17.05 [15.00, 19.00] 18.00 [16.00, 20.00]

Hematocrit (%) 32.60 [28.70, 37.00] 33.00 [27.08, 38.15] 35.95 [30.00, 40.62] 34.30 [29.55, 39.05]

Lactate (mmol/L) 1.70 [1.10, 2.15] 1.70 [1.20, 2.48] 3.90 [2.60, 5.40] 4.25 [3.00, 6.62]

MAKE90 (%) 81 (49.4%) 76 (45.8%) 66 (54.1%) 80 (67.8%) *

 > 25% drop in eGFR at day 90 com-
pared with pre-AKI reference-eGFR

12 (7.3%) 17 (10.2%) 7 ( 5.7%) 8 ( 6.8%)

On RRT at day 90 OR on RRT 
through day28 (%)

35 (21.3%) 38 (22.9%) 42 (34.4%) 57 (48.3%) *

28-day in-hospital mortality (%) 39 (23.8%) 31 (18.7%) 39 (32.0%) 42 (35.6%)

90-day in-hospital mortality (%) 51 (31.1%) 43 (25.9%) 46 (37.7%) 51 (43.2%)
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could facilitate the design of targeted and therefore 
more efficient clinical trials, inform therapeutic deci-
sion-making, and ultimately foster improved patient 
outcomes.

Abbreviations
SA-AKI  Sepsis-associated acute kidney injury
MAKE90  Major adverse kidney events up to day 90
CKD  Chronic kidney disease
eGFR  Estimated glomerular filtration rate
RRT   Renal replacement therapy
AKI  Acute kidney injury
APACHE II  Acute physiology and chronic health evaluation II
BMI  Body mass index
PAM  Partition around medoids
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