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Abstract 

Sepsis is a life-threatening condition characterised by endothelial barrier dysfunction and impairment of normal 
microcirculatory function, resulting in a state of hypoperfusion and tissue oedema. No specific pharmacological 
therapies are currently used to attenuate microvascular injury. Given the prominent role of endothelial breakdown 
and microcirculatory dysfunction in sepsis, there is a need for effective strategies to protect the endothelium. In this 
review we will discuss key mechanisms and putative therapeutic agents relevant to endothelial barrier function.
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Introduction
Sepsis is a state of organ dysfunction caused by a dys-
regulated host immune response to infection [1]. Despite 
advances in medical care, sepsis remains a leading cause 
of death, accounting for more than 20% of global deaths 
[2]. A hallmark feature of sepsis is microcirculatory dys-
function which manifests as areas of heterogenous or 
absent blood flow due to dysregulation of vascular tone, 
shunting of blood directly from arterioles to venules, and 
microthromboses [3]. Another key feature of sepsis is 
enhanced endothelial permeability which leads to inter-
stitial oedema [4]. While this initial increased endothe-
lial permeability is likely beneficial to the host immune 
response by allowing the transvascular flux of antibodies 

and antibacterial peptides, ultimately this becomes harm-
ful [4, 5].

Endothelial dysfunction is a common feature of acute 
inflammatory disorders including burns, trauma, and 
acute respiratory distress syndrome (ARDS) including 
that caused by COVID-19, as well as sepsis, and may 
account for overlap in clinical features between these 
syndromes.

Endothelial structure and function
The vascular tree is lined by a monolayer of endothelial 
cells which are critical to vascular integrity, haemostasis, 
vasomotor control, and immunological defence via exo-
crine, paracrine, and autocrine actions [6, 7]. The lumi-
nal surface is coated with the endothelial glycocalyx, a 
gel-like matrix of proteoglycans and glycoproteins [8]. 
In humans, estimates of endothelial surface area vary 
between 270 and 7000  m2 [9, 10].

A key mediator of vascular tone is nitric oxide (NO), 
which is synthesised in endothelial cells [11]. NO produc-
tion is modulated by endothelial shear stress and by vari-
ous signalling molecules, such as bradykinin, adenosine, 
serotonin, and vascular endothelial growth factor (VEGF) 
[12, 13]. Due to the pervasive role of dysregulated NO 
activity in sepsis, many attempts have been made to cor-
rect the heterogenous imbalance of NO in sepsis, all of 
which have failed to demonstrate benefit [14–17].
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Endothelial cells also produce prostacyclin which, in 
addition to contributing to vasodilation, prevents plate-
let deposition on the vessel wall [18]. The endothelium 
produces potent vasoconstrictors such as Endothelin-1 
[19] and facilitates the conversion of Angiotensin-1 into 
Angiotensin-2, another potent vasoconstrictor which is 
a product of the renin–angiotensin–aldosterone system 
[20].

Endothelial cell–cell junctions
Complex inter-endothelial junctional structures, such as 
adherens junctions and tight junctions, perform a critical 
role in maintaining vascular integrity and allow endothe-
lial cells to communicate with surrounding structures. 
The organisation of endothelial cell–cell junction com-
plexes varies along the vascular tree [21]—for example, 
endothelial junctions in the brain are rich in tight junc-
tions which ensure strict control of permeability across 
the blood brain barrier [22]. This contrasts with poorly 
organised tight junctions located in postcapillary venules 
which readily permit extravasation of inflammatory and 
immune cells [21, 23].

Adherens junctions are responsible for regulation of 
cell–cell adhesion, the actin cytoskeleton and intra-cel-
lular signalling [24] and are composed of the core trans-
membrane protein vascular-endothelial (VE)-cadherin 
which interacts with cytoplasmic proteins known as 
catenins. In sepsis, the extracellular domain of VE-cad-
herin is subject to proteolysis by neutrophil elastase [25] 
and metalloproteinases [26].

VE-cadherin junctions are tightly regulated by Rho 
proteins, a subfamily of small GTPases which belong to 
the Ras superfamily [27]. Key subtypes of the Rho sub-
family include Rac1 and RhoA which have been identified 
to perform central roles in the maintenance of endothe-
lial barrier integrity. The carefully balanced activation of 
Rac1 and inhibition of RhoA stabilises the VE-cadherin 
complex and prevents vascular leakage [28]. In experi-
mental models of sepsis, this balance is lost, and impair-
ment of Rho-associated pathways has been identified in 
endothelial cells [27]. Rac1 activation and RhoA inhibi-
tion are associated with VE-cadherin stabilisation and 
reduced vascular leakage in lipopolysaccharide (LPS) and 
interleukin (IL)-1β models of endothelial dysfunction [29, 
30].

Tight junctions serve to form a continuous intercellular 
barrier between cells and act to control the paracellular 
movement of ions and solutes [24, 31]. Tight junctions 
are composed of adhesion molecules, such as claudin, 
occludin and junction adhesion molecules, which exist 
in complex with the cytoplasmic scaffolding proteins 
zonula occludens (ZO)-1,-2 and -3 (Fig. 1) [24, 32]. The 
ZO scaffolding proteins link tight junctions to the actin 

cytoskeleton either through a direct link or through fur-
ther protein interactions [24]. ZO-1 has multiple domains 
which permit a wide array of cellular signalling, thereby 
providing plasticity of tight junction function [33, 34].

In addition to the key role of adherens junctions and 
tight junctions in maintaining vascular homeostasis, con-
nexins perform a vital role in intercellular communica-
tion. Connexins are transmembrane proteins which form 
intercellular channels and connect the cytoplasms of 
adjacent cells, thereby allowing the exchange of ions and 
small metabolites [35].

Disruption of key adhesion molecules is mediated by 
TNF-α and IL-1β, key pro-inflammatory cytokines in 
sepsis, whose production is increased as a result of acti-
vation of NF-κB dependent transcription [36]. In septic 
patients, NF-κB activity correlates with the severity of 
illness and is significantly higher in non-survivors [37]. 
NF-κB activation performs a crucial role in the patho-
physiology of sepsis by mediating the inflammatory 
response via the production of key cytokines, such as 
TNF-α (Fig. 2) [38].

In experimental models of sepsis, the NF-κB pathway is 
stimulated with the use of LPS, a component of the outer 
membrane of Gram-negative bacteria [39]. LPS performs 
a key role in driving Gram negative sepsis [40, 41] by acti-
vating Toll-like receptor (TLR) signalling. Ultimately, this 
cascade enables the nuclear translocation of key tran-
scription factors, such as NF-kB in order to promote pro-
inflammatory cytokine gene transcription [42, 43].

TNF-α is perhaps the most extensively studied pro-
inflammatory cytokine. Tracey and colleagues confirmed 
that the administration of recombinant TNF-α can 
induce shock and tissue injury [44]. Moreover, it has been 
demonstrated that the administration of anti-TNF anti-
bodies could prevent shock, organ dysfunction and death 
in a baboon Escherichia coli model of sepsis [45]. How-
ever, despite promising pre-clinical evidence the use of 
anti-TNF-α therapies has proven disappointing in clinical 
trials [46, 47].

 VEGF is a potent angiogenesis factor and pro-per-
meability mediator which is produced by endothelial 
cells and macrophages among a variety of cell types 
[48]. VEGF expression is primarily promoted by hypoxia 
[49], but also by pro-inflammatory cytokines such as 
IL-1 [50], IL-1β and TNF-α [51]. VEGF is thought to 
promote endothelial cell permeability via a range of 
mechanisms. Firstly, it has been demonstrated that the 
treatment of endothelial cells with VEGF results in the 
development of, previously absent, fenestrations [52, 53]. 
Secondly, VEGF results in the formation of clusters of 
vesicles which link the luminal and abluminal surfaces of 
endothelial cells. These clusters have been termed vesic-
ular vacuolar organelles and are thought to form a 
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pathway for the transcellular movement of fluid and sol-
ute [54, 55]. Finally, VEGF may directly interfere with key 
endothelial junctional structures. Using immunofluores-
cence based techniques Kevil and colleagues revealed 
that endothelial cell treatment with VEGF resulted in a 
loss of VE-cadherin and occludin [56].

Endothelial glycocalyx
The glycocalyx, a mesh-like network of proteoglycans 
and glycoproteins, lines the vascular endothelium [57], 
and regulates capillary and interstitial oncotic pressures 
to modulate fluid filtration [58, 59]. Restriction of the 
transvascular movement of large, negatively-charged 
molecules such as albumin results in an albumin gradient 
which opposes fluid flux across the endothelium [60].

In sepsis, degeneration of the glycocalyx results in vas-
cular leak, impaired perfusion, aberrant coagulation and 
leucocyte activation and adhesion [61–63]. This glyco-
calyceal degeneration is mediated by sheddases, enzymes 
such as heparinase and metalloproteinases, which are 
activated by inflammatory cytokines, such as TNF-α, and 
by Reactive Oxygen Species (ROS) [64, 65], and which 
cleave the key glycocalyx components heparan sulphate 
and syndecan-1, respectively [64, 66]. Cleavage of these 
important glycocalyx components and breakdown of 
intercellular junctions contributes to vascular leakage 
(Fig. 3). Since glycocalyceal function includes prevention 
of platelet adhesion and leucocyte activation and adhe-
sion, injury to the glycocalyx can cause a self-perpetuat-
ing cycle of inflammation and further endothelial injury.

Fig. 1 Endothelial cell–cell junction complexes. These key junctional structures maintain endothelial barrier integrity. The ZO proteins link 
the membrane proteins to the filamentous cytoskeleton. Members of the Rho family of GTPases mediate opposing changes in endothelial cell 
permeability with Rac1 stabilising the VE-cadherin complex and RhoA de-stabilising the VE-cadherin complex
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Several studies have demonstrated that soluble markers 
of glycocalyx breakdown, such as syndecan-1, hyaluronan 

and heparan sulphate, are associated with sepsis pres-
ence, severity, and mortality [67–69].

Fig. 2 An array of microbial components stimulate the innate immune response by activating Toll-like receptors which results in the nuclear 
translocation of the transcription factor NF-κB. NF-κB then promotes the expression of pro-inflammatory cytokines such as TNF- α which induces 
endothelial cell dysfunction

Fig. 3 The sepsis state results in vascular leakage due to a combination of glycocalyx degradation and cell–cell disruption. The loss of glycocalyx 
and endothelial integrity results in the transvascular loss of albumin which favours vascular leakage
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Intravenous fluid therapy, a key component of sepsis 
resuscitation, may exacerbate glycocalyceal injury [70–
72]. The hormone atrial natriuretic peptide, released from 
cardiac atria in response to mechanical stretch, has been 
proposed as an important mediator of glycocalyx shed-
ding [72–74]. Alternatively, rapid infusion of intravenous 
fluid may cause direct endothelial shear stress which may 
promote the activity of glycocalyx-shedding metallopro-
teinases [75] or cause neutrophil activation which may 
result in neutrophil elastase-induced endothelial injury 
[76, 77].

Vascular leakage and tissue hypoxia
In normal health a functioning and highly selective 
endothelial barrier is crucial to the maintenance of micro-
vascular homeostasis. The angiopoietin-Tie 2 pathway 
is a complex, multifaceted cascade which is commonly 
implicated in vascular permeability. Tie 2 is a transmem-
brane endothelial tyrosine kinase [78]. Angiopoietin-1 
(Ang-1) acts as a Tie 2 agonist and exerts a protective 
effect on the endothelium by promoting endothelial 
barrier function [79]. Ang-1, via Akt activation, inhibits 
the activity of the forkhead transcription factor which 
is a key regulator of genes associated with endothelial 
destabilisation [80]. In contrast, Angiopoietin-2 (Ang-
2) is a context-dependent Tie 2 agonist or antagonist. 
The release of Ang-2 from Weibel-Palade bodies can be 
stimulated by key pro-permeability mediators such as 
thrombin and histamine [81]. In a murine LPS-induced 
endotoxaemic model of sepsis, Ang-2 binding resulted 

in Tie 2 antagonism [82], thus negating the protective 
effects of Ang-1 (Fig. 4). Moreover, Ang-2 binding to Tie 
2 precipitates integrin degradation and endothelial bar-
rier destabilisation [83]. In addition to Tie-2 antagonism, 
Ang-2 has been revealed to directly activate β1-integrin 
which resulted in cytoskeleton reorganisation and desta-
bilization of intercellular junctions via increased cell con-
tractility [84]. Thamm and colleagues have demonstrated 
increased Tie-2 cleavage in endothelial cells exposed to 
TNF- α, septic mice and septic humans [85]. Moreover, 
it was demonstrated that the matrix metalloprotease, 
MMP14, performed a central role in the cleavage of 
Tie-2 [85]. Furthermore, in a cecal ligation and puncture 
(CLP) model the investigators also demonstrated that Tie 
2 transcription was dependent on flow [85, 86]. Absent 
flow, such as that observed in the septic microcircula-
tion, was associated with reduced levels of GATA3, a flow 
dependent transcription factor which performs a key role 
in regulating Tie 2 transcription [85, 86].

Importantly, Ang-2 has been identified as a prognostic 
biomarker in sepsis [87, 88], with Ang 2 levels correlat-
ing with disease severity and survival [89].The prominent 
role of the angiopoietin-Tie 2 pathway in endothelial 
dysfunction makes modulation of the Ang-1/Ang-2/
Tie-2 equilibrium an attractive therapeutic target in sep-
sis. In a CLP model of sepsis, the use of a synthetic Tie 
2 agonist was associated with an attenuated cytokine 
response, reduced vascular leakage, and improved organ 
function [90]. In another CLP model the use of Ang-2 
small interfering RNA was associated with reduced IL-6 

Fig. 4 In sepsis Ang-2 acts as an antagonist of Tie 2 which results in disruption of protective Ang-1/Tie 2 signalling. The antagonistic effects 
of Ang-2 leads to increased inflammation and inhibition of the vascular stabilising Akt signalling pathway. Moreover, the vascular barrier protective 
effects of Tie 2 are abrogated by the cleaving properties of MMP14
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transcription and reduced levels of neutrophil infiltra-
tion, vascular leakage, and organ dysfunction [91].

Oxygen delivery occurs via diffusion of oxygen from 
capillary red blood cells to the mitochondria of tissue 
cells. Diffusion is dependent on the  PO2 diffusion gradi-
ent between capillaries and tissue cells and on the diffu-
sion distance from capillary red blood cells to tissue cell 
mitochondria [92]. In sepsis, heterogenous generation 
of NO, secondary to endothelial dysfunction, results in 
pathological vasodilatation and shunt formation with 
ensuant variable perfusion of tissue regions and cellular 
hypoxia in areas distant from perfused capillaries [92, 
93]. Injury to the endothelial glycocalyx and to inter-
endothelial junctional structures, culminating in intersti-
tial oedema, may compound this problem as it increases 
diffusion distance between capillaries and cells (Fig.  5) 
[92]. Mechanical extrinsic compression of capillaries and 
lymphatics by interstitial fluid may further worsen oxy-
gen delivery (Fig. 5) [94]. Exacerbation of tissue hypoxia 
by oedema may explain adverse outcomes associated 
with fluid overload in patients with sepsis [95–97].  

Potential therapeutic approaches
Given the prominent role of endothelial breakdown and 
dysfunction in sepsis, preservation and restoration of 
endothelial function represents a key therapeutic target.

Imatinib and other tyrosine kinase inhibitors
The Abelson (Abl) family of tyrosine kinases, Abl (Abl1) 
and Arg (Abl2), perform an important role in cytoskeletal 
remodelling, adhesion, and migration [98]. Zandy et al., 
demonstrated the importance of Abl kinases in the for-
mation and maintenance of adherens junctions [99]. The 
inhibition of tyrosine kinase Arg, also known as Abl2, 
serves to maintain endothelial barrier integrity. It has 
been demonstrated that depletion of Arg in endothelial 

cells is associated with reduced adherens junctions dis-
ruption and intercellular gap formation [100].

Imatinib, the most widely-studied Tyrosine Kinase 
Inhibitor, potentiates the activity of Rac 1 [101, 102], an 
endothelial barrier-supporting GTPase known to rein-
force cell–matrix [103] and cell–cell interactions [104]. 
Imatinib targets the Abl family of non-receptor tyros-
ine kinases in addition to other tyrosine kinases, such as 
platelet-derived growth factor receptor, and the receptor 
tyrosine kinase Kit [105].

Vascular barrier protective effects of Imatinib have 
been identified in in vivo models of microcirculatory dys-
function and in patients with endothelial barrier disrup-
tion [106, 107]. In addition, the in vivo protective effects 
of Imatinib may be attributable to the effect on immune 
cells with Imatinib attenuating inflammation in animal 
models of LPS-induced lung injury [108, 109]. A poten-
tial clinical benefit has been demonstrated in patients 
with COVID-19, which shares many mechanistic fea-
tures with sepsis [110]. There is, therefore, a growing 
body of evidence to support a potential role for the short-
term administration of Imatinib as a therapeutic agent 
to maintain endothelial barrier integrity and attenuate 
inflammation in sepsis.

Selepressin
Vasopressin deficiency contributes to vascular dysfunc-
tion in septic shock [111] which provides the rationale for 
investigation of vasopressin receptor agonists in patients 
with sepsis. To date, however, vasopressin has failed to 
demonstrate clinical benefit over noradrenaline in sepsis 
[112]. One possible explanation is that non-specific vaso-
pressin receptor stimulation can result in detrimental 
microcirculatory effects. Stimulation of endothelial V2 
receptors can result in vasodilation via endothelial NOS 
activation [113], leucocyte adhesion and migration [114], 

Fig. 5 Normal oxygen diffusion from blood vessels to target tissue cells. b Tissue hypoxia occurring due to increased diffusion distance 
between oxygen carrying red blood cells in the microvascular blood vessels and the mitochondria of tissue cells. c Tissue hypoxia occurring due 
to a tamponade like effect of interstitial fluid on microvascular blood vessels
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secretion of procoagulant mediators [115] and salt and 
water retention [116]. 

Selepressin is a selective vasopressin V1a receptor ago-
nist. In an ovine model of sepsis, animals receiving sele-
pressin therapy had reduced vascular leakage compared 
to non-specific vasopressin receptor agonists and con-
trols [117]. Moreover, selepressin therapy was associated 
with reduced myocardial and pulmonary tissue concen-
trations of VEGF and Ang-2 [117]. VEGF, a potent stimu-
lator of vascular leakage, has been shown to increase the 
expression of Ang-2 in endothelial cells [118]. In sepsis, 
Ang-2 disrupts protective Tie2 signalling and contrib-
utes to endothelial barrier destabilisation [83]. However, 
despite the promising pre-clinical evidence base, in an 
RCT of 868 adult patients with septic shock receiving 
noradrenaline therapy, the use of selepressin did not 
improve clinical outcomes [119].

Mesenchymal stromal cells
Mesenchymal stromal cells (MSCs) are pluripotent 
stem cells that can differentiate into multiple cell types 
of mesenchymal lineage [120]. MSC treatment is asso-
ciated with reduced organ dysfunction and coagulopa-
thy in septic mice [121, 122]. Moreover, MSCs protect 
against LPS and VEGF induced barrier permeability in 
human  umbilical vein  endothelial cells (HUVECs) [122, 
123]. Mechanistically, MSC treatment results in 
increased VE-cadherin levels and promotes VE-cadherin 
/ beta-catenin interaction on endothelial cells [123]. The 
in  vivo endothelial barrier protective effects of MSCs 
have been confirmed in a murine model of haemorrhagic 
shock where MSC administration resulted in reduced 
lung oedema and preservation of vascular tight junctions 
and adherens junctions [124].

A single centre pilot RCT which included 15 neutro-
penic patients with septic shock demonstrated more 
rapid haemodynamic stabilisation with prompt vaso-
pressor weaning and improved  PaO2/FiO2 ratios in those 
treated with MSC therapy [125]. Alp and colleagues sub-
sequently confirmed the safety of MSCs in patients with 
sepsis and septic shock and identified reduced Sequen-
tial Organ Failure Assessment (SOFA) scores in patients 
receiving MSCs [126]. However, in a phase 1 dose escala-
tion study in nine patients with septic shock, there was 
no efficacy signal in the MSC treatment arm [127].

The inflammatory-mediated barrier breakdown in 
ARDS overlaps with sepsis. Administration of mesenchy-
mal stromal cell-derived extracellular vesicles (MSC-EVs) 
improves barrier integrity of human primary lung epithe-
lial and endothelial cells following exposure to the plasma 
of patients with a hypoinflammatory ARDS phenotype 
[128]. Despite conflicting data on the effect of MSC ther-
apy in phase 2 studies [129–134], there is evidence that 

MSCs have a protective effect on endothelium, providing 
a supportive rationale for further investigation in sepsis 
[134].

Statins
Statins possess an array of important pleiotropic effects 
[135, 136]. Zheng and colleagues identified that treat-
ment of HUVECs with Simvastatin attenuated LPS-
induced endothelial permeability by potentiating the 
activity of IQ‐GTPase‐activating protein 1, a regula-
tor of cytoskeletal function [137]. Furthermore, in a rat 
model of endotoxaemia, Simvastatin treatment attenu-
ated hepatic endothelial dysfunction and preserved the 
antithrombotic properties of sinusoidal endothelial cells 
disrupted by LPS [138, 139]. Statin therapy has also been 
shown to modify the activity of endothelial nitric oxide 
synthase, a key producer of NO, by preventing hypoxia 
and TNF- α induced downregulation [140]. In addition, it 
has been demonstrated that statin treatment prevents the 
nuclear translocation of NF-κB in endothelial cells sub-
jected to pro-inflammatory stimuli [141].

A retrospective cohort analysis of hospitalised patients 
with bacteraemia identified a significant survival benefit 
in patients with pre-existing statin therapy [142] although 
this was not confirmed in a subsequent RCT by Kruger 
et al. [143]. However, continued statin therapy in patients 
with pre-existing use is associated with improved sur-
vival [143].

PCSK‑9 inhibitors
Proprotein Convertase Subtilisin/Kexin-9 (PCSK-9) 
inhibitors are an emerging drug class with a growing 
evidence base for prevention of cardiovascular events in 
hypercholesterolaemia. PCSK-9 inhibitors inhibit the ser-
ine protease PCSK-9 and interfere with the LDL receptor 
recycling pathway, ultimately leading to recycling of the 
receptor and increased LDL cholesterol clearance [144]. 
PCSK-9 levels are elevated in patients with sepsis [145] 
and expression is upregulated in various models of sep-
sis [146]. Moreover, PCSK-9 knockout is associated with 
reduced bacterial dissemination, organ dysfunction and 
inflammation in a murine model of sepsis [147]. Impor-
tantly, PCSK-9 inhibition reverses impaired VE-cadherin 
expression observed in in vitro and in vivo models of sep-
sis [146].

Similar to statins, PCSK-9 inhibitors possess pluripo-
tent properties. PSCK-9 deficient mice exhibit reduced 
expression of NADPH oxidase, a major source of ROS 
production which may further serve to protect the 
endothelium [148]. The anti-inflammatory effects of 
PCSK-9 inhibition have been demonstrated by Tang and 
colleagues who confirmed that in vitro PCSK-9 inhibition 
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attenuates the generation of inflammatory cytokines by 
interfering with the NF-kB pathway [149].

In a placebo controlled, multicentre pilot trial, 60 
patients with severe COVID-19 infection were ran-
domised to receive 140-mg subcutaneous injection of 
Evolocumab, a PCSK-9 inhibitor, or placebo [150]. The 
investigators demonstrated that compared to placebo, 
PCSK-9 inhibition resulted in a greater reduction in IL-6 
levels, a reduced requirement for invasive ventilation and 
improved mortality. This highlights the potential role 
of PCSK-9 inhibitors as endothelial barrier protective 
agents.

Alpha adrenoceptor agonists
Alpha adrenoceptor agonists such as Clonidine and 
Dexmedetomidine cause sympathetic inhibition and 
parasympathetic stimulation [151]. The expression of 
adrenergic receptors on endothelial cells provides a 
sound rationale for investigation of these agents.

Dexmedetomidine is a commonly used sedative which 
attenuates inflammatory cytokine production in septic 
patients [152]. In a LPS rat model of endotoxaemia, Dex-
medetomidine administration was associated with atten-
uated TNF- α and IL-6 levels and a reduction in mortality 
[153]. This anti-inflammatory and mortality benefit has 
also been observed in CLP models of sepsis [154]. More-
over, Yeh and colleagues have demonstrated that Dexme-
detomidine reduces tight junction damage, endothelial 
dysfunction, and microcirculatory impairment in endo-
toxaemic rats [155].

Similarly, there is a growing body of evidence to sup-
port the investigation of Clonidine in sepsis. In a CLP 
murine model of sepsis, the pre-emptive administra-
tion of Clonidine attenuated pro-inflammatory cytokine 
release, downregulated the binding activity of NF-κB, 
and reduced mortality [156]. Moreover, Schmidt and 
colleagues confirmed that Clonidine administration was 
effective in attenuating microvascular permeability in 
endotoxaemic rats [157].

Intermedin
Intermedin is a member of the calcitonin gene related 
peptide family which exerts its effects via the calci-
tonin receptor-like receptor signalling pathway [158]. 
Aslam and colleagues identified that Intermedin reduces 
HUVEC permeability and induces Rac1 activation, a key 
endothelial barrier supporting GTPase [159]. It has been 
determined that pre-treatment of mice with Intermedin 
attenuates vascular leakage in LPS and CLP models of 
sepsis [160]. Furthermore, the anti-inflammatory effects 
of Intermedin have been demonstrated in a CLP model 
of sepsis in which Intermedin tempered inflammatory 
cytokine production [160].

Adrenomedullin
Adrenomedullin (ADM), another member of the calci-
tonin gene related peptide family, is a vasoactive peptide 
hormone which regulates endothelial barrier function 
and vascular tone. It has been demonstrated that blood 
ADM levels correlate with vasopressor requirement and 
mortality in patients with sepsis [161, 162].

In vitro data has confirmed that ADM attenuates 
endothelial permeability in HUVECs [163, 164]. Moreo-
ver, in a Staphylococcus aureus toxin model of sepsis in 
rats, administration of ADM attenuated endothelial leak-
age and reduced mortality from 53 to 7% [165]. These 
outcomes suggest that ADM performs a key role in con-
trolling endothelial barrier function and vascular tone, 
however, meticulous regulation is required. Of note, a 
multicentre phase 2 RCT investigating the safety and 
efficacy of inhaled pegylated adrenomedullin in adult 
patients with ARDS was recently stopped prematurely 
due to futility (NCT 04417036).

Adrecizumab
Adrecizumab is a non-neutralising ADM binding anti-
body which targets the N-terminus of ADM and only 
partially inhibits ADM signalling. In a CLP murine 
model of sepsis, Struck and colleagues demonstrated that 
the partial inhibition of ADM was more efficacious than 
an antibody which completely blocked ADM [166]. The 
investigators hypothesised that partial functional inhi-
bition of ADM negates the harmful effects of excessive 
ADM while still preserving an adequate degree of ADM 
activity which may be required, especially in the early 
hyperdynamic phase of sepsis [166].

The endothelial barrier protective effects of Adreci-
zumab have been demonstrated in LPS and CLP rat mod-
els of inflammation and sepsis [167]. The AdrenOSS-2 
trial, a biomarker-guided randomised trial, compared 
Adrecizumab with placebo in patients with septic shock 
and elevated concentrations of ADM. AdrenOSS-2 
revealed that Adrecizumab was associated with a greater 
improvement in SOFA scores compared to placebo and 
demonstrated a trend towards decreased mortality 
(23.9% versus 27.7%) [168]. Although promising, further 
trials of Adrecizumab are needed.

Vitamin C
Vitamin C has been extensively investigated in the man-
agement of sepsis. Zhou et al., demonstrated that Vitamin 
C pre-treatment in a CLP model of sepsis reduced exces-
sive production of NO and ROS and attenuated vascular 
leakage by preventing the dephosphorylation of occludin 
[169]. Occludin dephosphorylation results in disassem-
bly of tight junctions and increased vascular permeability 
[170]. Pre-clinical and clinical evidence has highlighted 
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that Vitamin C attenuates endotoxin induced lung injury 
[171] and oedema formation in patients with burn inju-
ries [172]. However, despite a promising pre-clinical evi-
dence base, results from RCTs investigating Vitamin C 
have been disappointing. A recent meta-analysis which 
included 37 trials concluded that parenteral Vitamin C 
therapy was not associated with a mortality benefit [173].

Canaglifozin
Canaglifozin is a sodium glucose co-transporter 2 inhibi-
tor utilised in the management of diabetes mellitus. 
Canaglifozin is an activator of AMPK, a serine/threo-
nine protein kinase, which exerts a protective effect on 
endothelial adherens junctions and tight junctions [174, 
175]. Moreover, it has been established that Canaglifozin 
attenuates LPS induced vascular leakage in mice [176]. 
No clinical trials of Canaglifozin have been undertaken in 
sepsis to date.

Humanin
Mitochondrial derived peptides, such as Humanin, pos-
sess key biological properties which make them an attrac-
tive therapeutic strategy in sepsis. Humanin has potent 
cytoprotective properties and has been demonstrated to 
protect endothelial cells from hyperglycaemia and oxida-
tive stress [177, 178]. Humanin may mediate this protec-
tion via increased expression of Krüppel-like factor 2, an 
important transcriptional regulator of endothelial func-
tion [177].

Urban and colleagues have recently determined that 
a synthetic derivative of humanin, Colivelin, protects 
against endothelial injury and glycocalyx damage in a 
murine CLP model of sepsis [179]. It was highlighted that 
Colivelin activates AMPK which may be responsible for 
the vascular protective effects observed in the treatment 
group.

Fresh frozen plasma (FFP)
Fresh Frozen Plasma (FFP) is used to correct clotting fac-
tor deficiencies in bleeding patients and in coagulopathic 
patients at risk of bleeding [180]. Some studies have iden-
tified reduced mortality following FFP administration 
irrespective of correction of the underlying coagulopathy 
[181, 182]. Therefore, in addition to correcting coagula-
tion factor deficiencies it has been postulated that FFP 
may possess endothelial protective properties. Straat and 
colleagues investigated the effects of FFP administration 
in non-bleeding critically ill patients, half of whom had 
sepsis [183]. FFP treatment was associated with reduced 
syndecan-1 and factor VIII levels, potentially reflecting 
attenuation of endothelial injury [183].

Activated protein C
Activated protein C (APC) is an endogenous protein 
generated from an inactive precursor, protein C, via the 
action of the Thrombin-Thrombomodulin complex [184]. 
APC possesses anti-coagulant and anti-inflammatory 
actions and has been demonstrated to inhibit neutrophil 
chemotaxis [185] and prevent endothelial cell apoptosis 
[186]. These properties made APC an attractive thera-
peutic option to investigate in sepsis.

Feistritzer and Riewald identified that the thrombin 
induced hyperpermeability of HUVECs was attenuated 
with APC pre-treatment [187]. However, the in  vivo 
effects of APC on endothelial permeability are conflicting 
[188, 189].

The first phase 3 study to investigate APC in sep-
sis included 1690 patients with severe sepsis [190], and 
reported significantly reduced mortality at 28-days 
(30.8% in the placebo group vs 24.7% in the APC group) 
[190], following which APC received marketing authori-
sation and approvals in patients with severe sepsis who 
were considered at high risk of mortality. However, sub-
sequent trials failed to confirm these results [191, 192], 
and worldwide withdrawal of APC from the market 
followed.

In a recent secondary analysis of the PROWESS-
SHOCK trial, Sinha and colleagues tested for heteroge-
neity of treatment effect in inflammatory phenotypes 
[193]. The investigators revealed that APC treatment was 
associated with a higher 28-day mortality in the hypoin-
flammatory phenotype (APC 24.3% vs Placebo 19.5%), 
whereas mortality was reduced in the hyperinflammatory 
phenotype (APC 33.0% vs Placebo 41.3%) [193]. APC 
may have been a victim of the phenotypic heterogeneity 
which besets sepsis.

Conclusion
Microvascular dysfunction is strongly associated with 
morbidity and mortality in sepsis. Microcirculatory dys-
function encompasses distinct pathological processes 
such as abnormal NO expression with ensuant heterog-
enous capillary perfusion, increased endothelial adhe-
siveness to leucocytes and platelets, dysregulation of 
smooth muscle cells with a loss of adrenergic sensitivity 
and increased endothelial permeability. This review has 
focused on the endothelial permeability aspect of micro-
circulatory dysfunction.

Despite the detrimental effects of vascular dysfunc-
tion and endothelial breakdown, no pharmacological 
therapies are currently used to attenuate vascular leak-
age. When putative endothelial protective agents have 
been studied in RCTs to date the results have been dis-
appointing despite promising pre-clinical evidence. 
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Future investigation of these agents should involve tar-
geted treatment of endothelial injury in mechanistically 
orientated trials with a homogenous patient population. 
Ideally, this would involve development of diagnostic 
methods to facilitate rapid diagnosis and phenotyping of 
endothelial dysfunction and would provide a platform for 
observation of response to treatment alongside patient-
centred clinical outcomes.
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