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Abstract 

Background Acute respiratory distress syndrome (ARDS) can be classified into sub‑phenotypes according to differ‑
ent inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory 
or hyperinflammatory sub‑phenotypes, even though the time of analysis may change the classification according 
to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 
group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis 
of patients according to their evolution by changing or not the cluster.
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Methods Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related 
to COVID‑19 infection in Spain. Patients were grouped according to a clustering mixed‑type data algorithm (k‑proto‑
types) using continuous and categorical readily available variables at baseline and day 3.

Results Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were 
grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 
3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were 
older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory bio‑
markers, and worst respiratory indexes at both time points. The 90‑day mortality was higher in cluster 2 at both clus‑
tering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 
3). Four hundred and fifty‑eight (33%) patients clustered in the first group were clustered in the second group on day 
3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3.

Conclusions During the first days, patients can be clustered into two groups and the process of clustering patients 
may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same 
cluster, a minority reaching 33% of patients analyzed may be re‑categorized into different clusters based on their 
progress. Such changes can significantly impact their prognosis.

Keywords ARDS, Clustering, Mortality, Precision medicine

Background
Acute respiratory distress syndrome (ARDS) is a hetero-
geneous condition characterized by respiratory failure 
and diffuse pulmonary noncardiogenic edema [1]. ARDS 
is associated with poor short- and long-term outcomes 
including high mortality rates, disability, and poor qual-
ity of life indicators. Several trials have failed to identify 
treatments for ARDS, and only corticosteroids [2], prone 
position [3], and limiting the damage caused by mechani-
cal ventilation [4, 5] have shown improved outcomes.

The COVID-19 pandemic hit Europe in late win-
ter/early spring 2020, probably resulting in the highest 
number of ARDS patients ever treated concomitantly. 
COVID-19 has increased the knowledge about the physi-
opathology and treatment of ARDS, highlighting the 
importance of anti-inflammatory treatment over antivi-
rals [6–9], thromboembolic events [10], and endothelial 
damage [11].

Sub-phenotypes of ARDS have been described as 
hypoinflammatory and hyperinflammatory, using clinical 
data and plasma inflammatory biomarkers in latent class 
analysis [12]. These sub-phenotypes have been associ-
ated with different outcomes, and reanalyses of several 
clinical trials found that the hyperinflammatory sub-phe-
notype may have better outcomes when receiving sim-
vastatin [13], or high-positive end-expiratory pressure 
(PEEP) levels [12]. In addition, these sub-phenotypes 
responded differently to fluid management [14]. Mod-
els for a parsimonious identification of sub-phenotypes 
using a few variables and machine-learning strategies are 
being developed. However, during the COVID-19 pan-
demic, fewer patients could be classified into the hyper-
inflammatory sub-phenotype [15]. A possible limitation 

of clustering is that the correct identification of sub-phe-
notypes is needed, and only one cross-sectional evalu-
ation may underestimate the impact of the changes or 
evolutions of markers in the first days of admission. Bos 
et  al. failed to identify sub-phenotypes in patients with 
COVID-19 by cross-sectional analysis with data from the 
respiratory system but two sub-phenotypes were identi-
fied through longitudinal analysis [16]. Few data evalu-
ating clustering using inflammation data and common 
variables measuring organ failure are available [17, 18].

We hypothesized that patients with COVID-19-asso-
ciated ARDS may be described by more than one dis-
crete cluster and the clustering process and its result may 
change during the first days of their admission, which 
may have an impact on their prognosis. To evaluate this, 
we aimed to study a cohort of patients and analyze the 
clustering of patients at baseline and day 3 using readily 
available data measuring organ failure, respiratory vari-
ables, and inflammation.

Methods
Study design
CIBERESUCICOVID is a multicenter, observational, 
prospective, retrospective cohort study that enrolled 
patients with COVID-19 admitted to Spanish inten-
sive care units (ICUs) [19]. The study was approved by 
the institution’s Internal Review Board (Comité Ètic 
d’Investigació Clínica, registry number HCB/2020/0370), 
and written informed consent was obtained from either 
the patients or their relatives. Local researchers were 
contacted by a member of the study team, and the par-
ticipating hospitals obtained approval from the local eth-
ics committee. De-identified patient data were collected 
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and stored via the REDCap electronic data capture tool 
[20, 21] hosted at the Centro de Investigación Biomédica 
en Red (CIBER), Spain. Trained local researchers incor-
porated data from the patient’s medical records into a 
separate database. Before statistical analyses, the data 
were checked by three independent experienced data col-
lectors trained in critical care, and site investigators were 
contacted for any queries. Missing analyses were per-
formed, and site investigators were contacted to obtain 
as much reliable and complete data as possible. Results 
were reported following the Strengthening the Report-
ing of Observational Studies in Epidemiology (STROBE) 
guidelines [22].

Study population and data collection
All consecutive patients admitted to the ICU at a par-
ticipating center from February 25, 2020, to September 
30, 2021, were enrolled if they fulfilled the following cri-
teria: ≥ 18 years of age, admission to the ICU, and labo-
ratory-confirmed SARS-CoV-2 infection. For this study, 
we selected those patients with a diagnosis of ARDS 
based on the Berlin definition [23] who needed invasive 
mechanical ventilation during the first day of admission 
to the ICU and who remained ventilated at least 3 days 
later. Patients were excluded if they had a non-confirmed 
SARS-CoV-2 infection, had no data at baseline, or were 
admitted to the ICU for other reasons.

After enrollment, prior epidemiological data, including 
demographics, comorbidities, clinical symptoms, disease 
chronology, and treatment administered upon hospital 
admission, were collected. The site researchers subse-
quently collected data acquired at hospital admission, 
ICU admission, start of mechanical ventilation (MV), 
72–96  h after ICU admission, weaning, ICU discharge, 
and hospital discharge, including vital signs, respiratory 
support devices (i.e., oxygen mask, high-flow nasal can-
nula, and noninvasive and invasive mechanical ventila-
tion), use of adjunctive therapies (i.e., neuromuscular 
blockade, prone position, and recruitment maneuvers), 
laboratory findings, arterial blood gases, and mechanical 
ventilation settings, if appropriate. Hemodynamic param-
eters and organ dysfunction were assessed using the 
Sequential Organ Assessment Failure Score (SOFA) [24] 
at ICU admission. Pharmacological treatments admin-
istered upon and during ICU admission until discharge 
from the ICU or hospital or death were also collected.

Specific data regarding MV since the start of invasive 
mechanical ventilation and on day three were analyzed. 
MV parameters related to ventilation-induced lung 
injury (VILI), such as tidal volume, respiratory rate, end-
inspiratory plateau, peak inspiratory pressures, positive 
end-expiratory pressure (PEEP), driving pressure, and 
static compliance of the respiratory system (Crs) were 

collected. Oxygenation impairment was analyzed using 
the PaO2/FiO2 ratio, and abnormalities in CO2 metabo-
lism were studied using the ventilatory ratio (VR), a sur-
rogate parameter of Vd/Vt. The worst event values were 
recorded preferentially. We did not analyze data from 
inflammatory cytokines.

Definitions
The diagnosis of ARDS was based on the Berlin definition 
[23]. Tidal volume was reported in mL/kg of predicted 
body weight (PBW). The driving pressure was defined as 
plateau pressure minus PEEP. Crs was calculated as tidal 
volume/plateau pressure—PEEP. The ventilatory ratio 
was defined as follows: (minute ventilation × PaCO2)/
(PBW × 100 × 37.5).

Outcome
The primary outcome was the 90-day mortality.

Statistical analysis
To derive the clusters, we first evaluated the distribu-
tions, missingness, and correlation of the candidate vari-
ables (Additional file 1: Fig. S1). Multiple imputation with 
chained equations was used to account for missing data, 
the results from the first dataset are presented, and the 
additional datasets were evaluated for consistency. After 
evaluating correlation, we excluded highly correlated 
variables (|rho|> 0.5) and those variables with more than 
60% of missing values. Ordering Points To Identify the 
Clustering Structure plots were used to determine the 
optimal clustering strategy [25]. Based on these plots, 
we applied the k-prototypes clustering to 44 variables 
(age, gender, height, weight, chronic heart failure, diabe-
tes mellitus, obesity, hypertension, hematologic disease, 
cancer, immunosuppression, systolic blood pressure, 
mean blood pressure, shock, temperature, heart rate, 
respiratory rate, pH, Hco3, hemoglobin, white blood 
counts, lymphocytes, platelet, D-dimer, prothrombin 
time, C-reactive protein, bilirubin, lactate, LDH, sodium, 
potassium, creatinine, procalcitonin, albumin, ventilatory 
ratio, tidal volume/ predicted body weight, driving pres-
sure, Pao2/FiO2, PEEP, peak pressure, neuromuscular 
blocking agents use, prone position, ECMO) collected at 
baseline and replicated with data collected at day 3 (33 
of 44 variables changed their values according to variable 
evolution) using a partitioning approach. The optimal 
number of clusters was determined based on the Silhou-
ette index [26, 27]. Once the optimal number of clusters 
was determined, patterns of clinical variables were visu-
alized in two ways: (1) chord plots (showing how clusters 
differ based on categorical variables) and (2) standard-
ized values of each continuous variable by cluster.
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To understand the implications of clusters and changes 
of clusters on 90-day mortality, Kaplan–Meier survival 
curves and hazard ratios adjusted by SOFA score were 
estimated, with 95% confidence intervals (CI).

In order to assess whether the clusters were explained 
by well-established measures of disease severity, we fitted 
logistic regression models including the SOFA score and/
or the most influential variables in clustering as inde-
pendent variables, and the C-indexes were obtained.

Data were presented as means and standard devia-
tions (SD) or medians and percentiles of 25% and 75%. 
For comparisons between clusters, we used t tests and 
the Mann–Whitney U test for continuous data and the 
χ2 test for categorical data. The statistical significance 
was set at 0.05 for two-sided tests (without adjustment 
for multiple comparisons; therefore, statistically signifi-
cant differences between clusters should be considered 
exploratory). Analysis was performed with the R statis-
tical package version 4.3.1 (R Foundation for Statistical 
Computing).

Results
Out of 6205 eligible patients, 3743 (60%) patients were 
included in the study (Fig.  1). Following the Silhou-
ette statistic (Additional file  1: Fig. S3), patients were 
grouped into two clusters using the k-prototypes algo-
rithm. At baseline, 1402 (37%) patients were included 
in cluster 1 and 2341 (63%) in cluster 2. The baseline 
characteristics of the patients are presented in Table 1. 
The patients included in cluster 2 were older, had 
more hypertension, shock, inflammation measured 
by CRP, and better respiratory indexes (including the 

requirement of the prone position, NMBA require-
ment, oxygenation by Pao2/Fio2, ventilatory ratio, and 
driving pressure) (Table  1). On day 3, 3643 patients 
were analyzed, 1557 (42%) patients were included in 
cluster 1 and 2086 (57%) in cluster 2. One hundred 
patients (3%) died or were discharged before day 3. 
The weight of each continuous variable in the clus-
ters is shown in Fig.  2 as standardized variable values 
and counts for categorical variables. In the clustering 
process between baseline and day 3, several variables 
changed their influence with an evolution of the val-
ues for each variable, but at both moments the clinical 
characteristics of the clustering were similar.

The 90-day mortality for patients included in clus-
ter 2 at baseline was 43.8% (n = 1025) versus 27.3% in 
cluster one (n = 383) (adjusted by SOFA score hazard 
ratio [aHR] 1.44, 95% confidence interval [95% CI] 1.21 
to 1.70). The 90-day mortality was 49% (n = 1023) for 
patients included in cluster 2 on day 3 versus 20.6% 
(n = 321) for patients in cluster 1 (aHR 2.18, 95% CI 
1.80–2.63). Unadjusted Kaplan–Meier survival curves 
are shown in Fig. 3.

Four hundred and fifty-eight (33%) patients clustered 
in the first group were clustered in the second group on 
day 3. In contrast, 638 (27%) patients clustered in the 
second group, were clustered in the first group on day 
3. Lower survival probability at 90 days was observed in 
those patients grouped in cluster 2 at both time points 
compared to those who were grouped at cluster 1 at both 
time points (aHR 2.45, 95%CI 1.89–3.19), followed by 
those who changed from cluster 1 to cluster 2 over time 
(aHR 2.11, 95% CI 1.56–2.87). Those who changed from 

Fig. 1 Flowchart of patient screening and enrollment
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Table 1 Demographic and clinical characteristics of patients by clusters at baseline and day 3

Missing values, n (%) at 
baseline/n (%) at day 3

Clustering at baseline Clustering on day 3

Cluster 1 Cluster 2 Cluster 1 Cluster 2

Age, years 4 (0.11%) 60 [50,69] 67 [60,72] 61 [51,69] 67 [60,73]

Sex, female 4 (0.11%) 494 (35%) 614 (26%) 574 (37%) 505 (24%)

Active smoker 730 (19.5) 68 (6.09%) 134 (7.06%) 81 (6.40%) 115 (6.93%)

Hypertension 15 (0.40%) 306 (22%) 1633 (70%) 463 (30%) 1420 (68%)

Diabetes mellitus 19 (0.51%) 221 (16%) 761 (33%) 296 (19%) 659 (32%)

Obesity 14 (0.37%) 459 (33%) 890 (38%) 529 (34%) 790 (38%)

Chronic heart failure 359 (9.59%) 112 (9%) 380 (18%) 145 (10%) 327 (18%)

Chronic kidney disease 11 (0.29%) 49 (3%) 171 (7%) 50 (3%) 157 (7%)

Chronic respiratory disease 11 (0.29%) 92 (7%) 280 (12%) 113 (7%) 246 (12%)

Hematologic disease 402 (10.7%) 48 (4%) 108 (5%) 66 (5%) 85 (5%)

Malignant neoplasm 394 (10.5%) 40 (3%) 78 (4%) 44 (3%) 72 (4%)

Immunosuppression 411 (10.9%) 24 (2%) 42 (2%) 20 (2%) 42 (2%)

APACHE II score at ICU admission 1743 (46.6%) 12 [9, 16] 14 [10, 19] – –

SOFA score 1411 (37.7%)/1685 (45%) 5 [4, 7] 7 [6, 8] 4 [3, 6] 7 [6, 8]

Temperature, ºC 649 (17.3%)/875 (23.4%) 36.9 [36.1,37.7] 36.8 [36.0,37.6] 36.7 [36.0,37.2] 36.8 [36.0,37.5]

Respiratory rate, bpm 765 (20.4%)/1011 (27%) 24 [20, 31] 25 [20, 30] 20 [18, 24] 23 [20, 26]

Systolic blood pressure, mmHg 589 (15.7%)/925 (24.7%) 122 [105,140] 120 [101,140] 130 [113,151] 125 [109,146]

Mean blood pressure, mmHg 1376 (36.8%)/1510 (40.3%) 85 [72,98] 83 [70,96] 90 [75,103] 82 [71,96]

Heart rate, bpm 620 (16.6%)/876 (23.4%) 85 [70,100] 87 [70,102] 70 [55,89] 80 [60,98]

PaO2/FIO2 ratio, mmHg 310 (8.28%)/359 (9.59%) 119 [83,177] 110 [80.6,154] 198 [156,250] 161 [122,210]

PaO2 mmhg 204 (5.45%)/328 (8.76%) 84 [67.0,114] 84[66.9,110] 88 [75,110] 86 [73,107]

Vasopressor use 419 (11.2%)/555 (14.8%) 352 (28%) 1718 (82%) 444 (32%) 1434 (79%)

pH 107 (2.86%)/310 (8.28%) 7.40 [7.34,7.45] 7.34 [7.27,7.41] 7.43 [7.40,7.46] 7.37 [7.31,7.42]

PaCO2, mmHg 117 (3.13%)/305 (8.15%) 41 [35.0,47.9] 45 [37.1,53.8] 43 [39.0,47.3] 48 [42.6,55.4]

Lactate, mmol/L 817 (21.8%)/1001 (26.7%) 1.40 [1.10,1.90] 1.50 [1.10,2.10] 1.62 [1.20,2.10] 1.80 [1.36,2.30]

Hemoglobin, g/dl 546 (14.6%)/684 (18.3%) 13.0 [11.8,14.1] 13.2 [11.9,14.4] 11.8 [10.7,13.0] 12.1 [10.9,13.3]

White blood cell count,  109/L 52 (1.39%)/393 (10.5%) 8.96 [6.39,12.8] 10.0 [7.07,13.9] 8.30 [6.30,10.9] 9.82 [7.20,13.5]

Lymphocyte count,  109/L 146 (3.90%)/407 (10.9%) 0.64 [0.42,0.91] 0.62 [0.41,0.90] 0.70 [0.48,1.05] 0.60 [0.40,0.90]

Neutrophil count,  109/L 265 (7.08%)/468 (12.5%) 7.6 [5.20,11.3] 8.62 [5.96,12.5] 6.8 [4.92,9.20] 8.41 [5.90,11.9]

Platelet count,  109/L 58 (1.55%)/331 (8.84%) 236 [181,312] 230 [174,302] 277 [212,350] 242 [179,316]

D‑dimers, mg/L 705 (18.8%)/1191 (31.8%) 1197 [600,3398] 1371 [698,4110] 2000 [940,5174] 2498 [1102,7323]

Ferritin, ng/mL 2123 (56.7%)/2456 (65.6%) 1109 [561,1995] 1248 [678,1976] 994 [526,1690] 1214 [722,1928]

IL6, pg/mL 2747 (73.4%)/3112 (83.1%) 119 [38.3,299] 116 [40.1,272] 60.8 [15.4,242] 140 [35.5,555]

CRP, mg/dL 332 (8.87%)/700 (18.7%) 126 [58.1,215] 155 [72.3,249] 42.0 [17.1,95.1] 77.4 [26.4,193]

Procalcitonin, μg/l 1137 (30.4%)/1830 (48.9%) 0.20 [0.09,0.50] 0.27 [0.13,0.80] 0.12 [0.07,0.32] 0.36 [0.13,1.20]

Lactate dehydrogenase, U/l 612 (16.2%)/1105 (29.2%) 490 [376,652] 542 [414,740] 379 [304,492] 434 [338,585]

Troponin T, ng/l 3047 (81.4%)/3244 (86.7%) 0.01 [0.01,0.04] 0.02 [0.01,0.07] 0.02 [0.01,0.07] 0.02 [0.01,0.0

NT‑proBNP, pg/mL 3132 (83.1%)/3330 (89%) 314 [123,785] 642 [245,1763 225 [108,567] 676 [239,2156]

Prothrombin time, seg 1239 (33.1%)/1474 (39.4%) 13.0 [12.1,14.2] 13.3 [12.2,14.7] 12.7 [11.9,13.9] 13.0 [11.9,14.4]

Bilirubin, mg/dL 476 (12.7%)/822 (22.0%) 0.60 [0.40,0.90] 0.60 [0.40,0.90] 0.50 [0.31,0.80] 0.60 [0.38,1.10]

Albumin, g/dL 1751 (46.8%)/1825 (48.8%) 3.10 [2.70,3.40] 3.10 [2.70,3.40] 2.88 [2.59,3.10] 2.64 [2.37,3.00]

Serum creatinine, mg/dL 42 (1.12%)/326 (8.71%) 0.75 [0.62,0.94] 0.93 [0.72,1.26] 0.70 [0.56,0.90] 0.99 [0.71,1.5

Sodium, mmol/L 467 (12.5%)/633 (16.9%) 139 [136,141] 138 [135,141] 142 [139,145] 141 [139,145]

Potassium, mmol/L 486 (13%)/640 (17.1%) 4 [3.66,4.40] 4.10 [3.70,4.50] 4.06 [3.70,4.40] 4.30 [3.90,4.70]

Tidal volume/PBW (mL/kg) 1264 (33.8%)/1155 (30.9%) 7.09 [6.38,7.91] 7.03 [6.38,7.81] 7.19 [6.46,8.0 7.08 [6.39,7.83]

PEEP,  cmH2O 537 (14.3%)/366 (9.78%) 12 [10, 14] 12 [10, 14] 12 [10, 13] 12 [10, 14]

FiO2, % 100 (2.67%)/219 (5.85%) 80 [60,100] 90 [65,100] 45 [40,55] 55 [45,70]

Peak inspiratory pressure,  cmH2O 1869 (49.9%)/1921 (51.0%) 30 [27, 34] 31 [28, 35] 28 [25, 32] 32 [28, 36]
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cluster 2 to cluster 1 overtime had similar survival prob-
ability (aHR 1.18, 95% CI 0.85–1.62) to those patients 
grouped at cluster 1 at both moments (Table  2, Figs.  3 
and 4).

We conducted an evaluation to determine if we could 
cluster patients using parsimonious variables. To do this, 
we assessed the ability to group patients using C-index 
for SOFA score at baseline and on the third day. The 
results showed that the C-index was 0.74 (95% CI 0.72–
0.76) for baseline and 0.79 (95% CI 0.77–0.81) for the 
third day. We further analyzed the results by selecting 
the four most differential variables of each clustering pro-
cess (age, glucose, sodium bicarbonate and pH at base-
line and ventilator ratio, peak inspiratory pressure,  PaO2/
FiO2, and pH on day 3). The C-index was 0.74 (95% CI 
0.72–0.76) for baseline and 0.82 (95% CI 0.80–0.85) for 
the third day.

Discussion
In our study, we found that patients with COVID-
19-related ARDS could be clustered into two groups by 
k-prototypes at baseline and on day 3. Patients with more 
severe organ dysfunction, older age, worse oxygena-
tion, respiratory mechanics, higher ventilatory ratio, pH, 
bicarbonate, and inflammatory markers were clustered in 
cluster 2 and had the highest mortality at both times. It is 
noteworthy that patients may change the cluster between 
the analyses at baseline or during day 3, improving or 
worsening their prognosis.

Strategies based on personalized medicine involve the 
identification of groups or clusters of patients with simi-
lar clinical and biological characteristics in order to tailor 

treatment to populations where it is most likely to be 
beneficial [28, 29]. This is usually not easy, as some con-
ditions common to critically ill patients, such as sepsis 
or ARDS, are heterogeneous, share common causes and 
inflammatory pathways, and may differ in other ways. 
Clustering based on common clinical and biological 
characteristics has been proposed as a strategy to identify 
homogeneous populations to which treatments can be 
applied [30–32]. Post hoc analysis of negative clinical tri-
als has shown that the same treatments may be beneficial 
in certain clusters. The clustering of ARDS patients was 
developed by cross-sectional analysis in the first hours of 
development; however, clinical characteristics and bio-
logical responses are dynamic and may change. In sep-
sis, a hyperinflammatory phase followed by a regulatory 
hypoinflammatory response has been described [33]. In 
pneumonia, markers of hyperinflammation may be fol-
lowed by signs of immunosuppression, such as lympho-
cytopenia, with a more dysregulated response for both 
phases being associated with the worst prognosis [34, 
35].

Typically, clinical trials aim to enroll patients within 
the first 24–48  h of admission. However, there may 
be a delay before treatment is administered during 
which the sub-phenotype classification of patients may 
change. In real-life situations, this delay may be even 
longer. Therefore, it is critical to continuously evaluate 
readily available measures that can dynamically clas-
sify patients and account for changes in sub-pheno-
types. This is necessary because it affects prognosis. A 
previous study showed that sub-phenotypes analyzed 
by latent class analysis showed stability from baseline 

Table 1 (continued)

Missing values, n (%) at 
baseline/n (%) at day 3

Clustering at baseline Clustering on day 3

Cluster 1 Cluster 2 Cluster 1 Cluster 2

End‑inspiratory plateau pressure,  cmH2O 2158 (57.7%)/2322 (61.3%) 24 [21, 27] 25 [22, 28] 23 [20, 26] 25 [22, 28]

Driving pressure,  cmH2Oa 2172 (58%)/2334(60%) 12 [10, 15] 12.5 [10, 15] 12 [9, 14] 12 [10, 15]

Compliance, mL/cmH2Ob 2284 (61%)/2422 (64.7%) 35.8 [28.2,46.0] 35.7 [29.1,47] 37.8 [30,50] 36.4 [28.7,46.4]

Ventilatory  ratioc 1346 (36%)/1279 (34.2%) 1.59 [1.28,1.95] 1.75 [1.40,2.24] 1.66 [1.40,1.99] 2.05 [1.69,2.50]

Neuromuscular blocking agent use 425 (11.4%)/555 (14.8%) 430 (35%) 1683 (81%) 551 (40%) 1394 (77%)

Position 681 (18.2%)/769 (20.5%)

Supine 778 (70%) 1135 (58%) 946 (75%) 1048 (61%)

Prone 319 (28%) 770 (40%) 282 (23%) 631 (37%)

Other 18(2%) 42(2%) 29 (2%) 38 (2%)

Continuous variables are expressed as median (IQR) and categorical variables as numbers (percentages)

CRP C-reactive protein; FiO2 fraction of inspired oxygen; IL Interleukin; MV mechanical ventilation; NT-proBNP N-terminal pro-brain natriuretic peptide; PaCO2 arterial 
partial pressure of carbon dioxide; PaO2 partial pressure of arterial oxygen; PBW predicted body weight; SOFA sequential organ failure assessment score
a Defined as plateau pressure—PEEP
b Defined as tidal volume/ (Plateau pressure − PEEP)
c Defined as (minute ventilation ×  PaCO2)/ (PBW × 100 × 37.5)
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to day 3 and 94% remained in the same class [36]. Bos 
et  al. did discover two trajectories related to ventila-
tory ratio and mechanical power that could potentially 
predict the duration of mechanical ventilation and 
the risk of death [16]. More recently, Chen and col-
leagues [37] described 3 longitudinal phenotypes with 
several changes between phenotypes during the first 
4  days. Lu et  al. analyzed the incidence of sub-pheno-
types and their trajectories during 10  days according 
to respiratory support [38]. Sinha et  al. observed that 

transcriptional profiling of the phenotypes reveals 
divergent biological signatures and changes in gene 
expression over time [39]. These results are in line with 
our findings and emphasize the need to classify patients 
just before planning an intervention taking into account 
the changes in clinical and analytical variables. Accord-
ing to our results, the probability of survival at 90 days 
is better predicted by clustering at day 3 (Fig.  3b, c), 
and the differences between clusters are also greater 
at day 3, but as expected with lower values compared 
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Fig. 2 Comparison of variables that contribute to clusters. A Standardized values of each continuous variable by cluster at baseline. B Chord 
plots (showing how clusters differ based on categorical variables) at baseline. C Standardized values of each continuous variable by cluster at day 
3. D Chord plots (showing how clusters differ based on categorical variables) at day 3. CRP C‑reactive protein; FiO2 fraction of inspired oxygen; IL 
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to baseline (Table  1). Whether prognostic enrichment 
could be modified over time is also an important point 
to resolve.

Previous clustering processes were based on the 
inflammatory status, a fundamental key in the patho-
genesis of ARDS. However, it is not well known how 
much inflammation is enough to damage the lungs. 
Whether or not a cytokine storm is associated with 
critical COVID-19 has been discussed in relation to 
anti-inflammatory treatment. It is recognized that in 
critically COVID-19 there is less inflammation than 
other diseases [40], although the impact on organ fail-
ure is large. It seems that the clustering process in our 
study is mostly influenced by organ failure, as suggested 

by the individual SOFA score components (as shown 
in Fig.  2). This is significant because the SOFA score 
is commonly used and can accurately predict how the 
subjects are assigned to clusters in our cohort. Changes 
in SOFA scores have been used to measure the outcome 
of several studies and as an indicator of poor prognosis. 
However, the prognosis of clustering in our cohort is 
independent of the SOFA score, as demonstrated by the 
adjusted HR.

We decided to use k-prototypes, an unsupervised 
machine-learning method for clustering. This method 
has shown good performance in identifying clusters for 
heterogeneous data [41] and allowed us to include con-
tinuous and categorical variables that we considered 
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clinically relevant. Our results are similar to the clusters 
developed by latent class analysis in the order of inflam-
mation, severity, respiratory parameters, and progno-
sis, and we found a significant difference in mortality 
between clusters at both time points evaluated.

It is important to acknowledge both the strengths and 
limitations of our study. On the positive side, we were 
able to collect data from a large and well-defined group of 
patients. However, it is important to note that our study 
focused only on patients with COVID-19-associated 
ARDS, and some results may be specific to COVID-19 
rather than ARDS. However, most ARDS studies show 
pneumonia as the primary cause, which may help to 
mitigate this limitation. Other limitations are that we did 
not collect a complete biological, physiological or radio-
logical assessment with cytokines, esophageal pressure or 
tomographic measurements for all patients. However, we 
were able to include several standard analytical variables 
and found clusters with similar characteristics as previ-
ously described. Furthermore, we included several varia-
bles that could vary according to the management of each 
center and also used all data as a derivation cohort and 
did not validate our results in another cohort. Finally, we 
found that the clustering process was different at baseline 
and day 3, with several variables changing their weight 
and the differences between clusters becoming more pro-
nounced at day 3.

Table 2 Unadjusted hazard ratio (95% CI) for 90‑day survival 
probability by clusters

90-day mortality Hazard ratio 95% CI

At baseline

 Cluster 1 (n = 1402) 383 (27.3%) Reference

 Cluster 2 (n = 2341) 1025 (43.8%) 1.82 1.62–2.05

Day 3

 Cluster 1 (n = 1557) 321 (20.6%) Reference

 Cluster 2 (n = 2086) 1023 (49.0%) 2.97 2.62–3.37

Change from baseline 
to day 3

 From 1 to 1 (n = 919) 172 (18.7%) Reference

 From 1 to 2 (n = 458) 200 (43.7%) 2.77 2.26–3.40

 From 2 to 1 (n = 638) 149 (23.4%) 1.26 1.02–1.58

 From 2 to 2 (n = 1628) 823 (50.6%) 3.45 2.93–4.07

cluster 1
n = 1402

cluster 2
n = 2341

ICU discharge before day 3
n = 100

cluster 1
n = 1557

cluster 2
n = 2086

alive
n = 2335

death
n = 1408

Baseline Day 3 90-day mortality
Fig. 4 Sankey plot for ARDS population
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Conclusion
During the first few days, patients can be clustered into 
two groups and the process of clustering patients may 
change as they continue to evolve. This means that 
despite a vast majority of patients remaining in the same 
cluster a minority reaching 33% of patients analyzed may 
be re-categorized into different clusters based on their 
progress. Such changes can significantly impact their 
prognosis. Such changes can significantly impact their 
prognosis, either positively or negatively. To ensure bet-
ter classification, the clustering process must take into 
account the evolving condition of patients.

Abbreviations
ARDS  Acute respiratory distress syndrome
HR  Hazard ratio
ICUs  Intensive care units
MV  Mechanical ventilation
PEEP  Positive end‑expiratory pressure
SOFA  Sequential Organ Assessment Failure Score

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13054‑ 024‑ 04876‑5.

Additional file 1. Clustering COVID‑19 ARDS patients through the first 
days of ICU admission. An analysis of the CIBERESUCICOVID Cohort.

Acknowledgements
We are indebted to all our medical and nursing colleagues for their assistance 
and cooperation in this study.
CIBERESUCICOVID Collaborators: Berta Adell‑Serrano, María Aguilar Cabello, 
Luciano Aguilera, Victoria Alcaraz‑Serrano, Cesar Aldecoa, Cynthia Alegre, 
Raquel Almansa, Sergio Álvarez, Antonio Álvarez Ruiz, Rosario Amaya Villar, 
Ruth Andrea, Mariana Andrea Novo, José Ángel, Jose Manuel Añon, Marta 
Arrieta, J Ignacio Ayestarán, Joan Ramon Badia, Mariona Badía, Orville Báez 
Pravia, Ana Balan Mariño, Begoña Balsera, Carme Barberà, José Barberán, 
Laura Barbena, Enric Barbeta, Tommaso Bardi, Patricia Barral Segade, Marta 
Barroso, José Ángel Berezo García, Jesús F Bermejo‑Martin, Belén Beteré, Judit 
Bigas, Aaron Blandino Ortiz, Rafael Blancas, María Luisa Blasco Cortés, María 
Boado, María Bodi Saera, Neus Bofill, María Teresa Bouza Vieiro, Leticia Bueno, 
Elena Bustamante‑Munguira, Juan Bustamante‑Munguira, Cecilia del Busto 
Martínez, Jesús Caballero, David Campi Hermoso, Sandra Campos Fernández, 
Cristina Carbajales, Iosune Cano, Maria Luisa Cantón‑Bulnes, Nieves Carbonell, 
Pablo Cardina Fernández, Laura Carrión García, Sulamita Carvalho, Núria Casa‑
cuberta‑Barberà, Manuel Castellà, Andrea Castellví, Pedro Castro, Mercedes 
Catalán‑González, Ramon Cicuendez Ávila, Catia Cillóniz, Luisa Clar, Cristina 
Climent, Jordi Codina, Pamela Conde, Sofía Contreras, María Cruz Martin, Raul 
de Pablo Sánchez, Diego De Mendoza, Emili Díaz, Yolanda Díaz, María Digna 
Rivas Vilas, Cristina Dólera Moreno, Irene Dot, Pedro Enríquez Giraudo, Inés 
Esmorís Arijón, Angel Estella, Teresa Farre Monjo, Javier Fernández, Carlos Fer‑
rando, Albert Figueras, Eva Forcadell‑Ferreres, Lorena Forcelledo Espina, Nieves 
Franco, Enric Franquesa, Àngels Furro, Albert Gabarrus, Cristóbal Galbán, Elena 
Gallego, Felipe García, Beatriz García, José Luis García Garmendia, Dario Garcia‑
Gasulla, Emilio García Prieto, Carlos García Redruello, Amaia García Sagastume, 
José Garnacho‑Montero, Maria Luisa Gascón Castillo, Gemma Gomà, José M. 
Gómez, Vanesa Gómez Casal, Silvia Gómez, Carmen Gómez Gonzalez, David 
de Gonzalo‑Calvo, Jessica González, Federico Gordo, Maria Pilar Gracia, Víctor 
D. Gumucio‑Sanguino, Alba Herraiz, Rubén Herrán‑Monge, Arturo Huerta, 
Mercedes Ibarz, Silvia Iglesias, Maria Teresa Janer, Gabriel Jiménez, Ruth Noemí 
Jorge García, Mar Juan Díaz, Karsa Kiarostami, Juan I Lazo Álvarez, Miguel 
León, Alexandre López‑Gavín, Ana López Lago, Juan Lopez Messa, Esther 
López‑Ramos, Ana Loza‑Vázquez, Desire Macias Guerrero, Nuria Mamolar 
Herrera, Rafael Mañez Mendiluce, Cecilia L Mantellini, Gregorio Marco Naya, 
Pilar Marcos, Judith Marin‑Corral, Enrique Marmol Peis, Paula Martín Vicente, 

María Martínez, Carmen Eulalia Martínez Fernández, Amalia Martínez de la 
Gándara, Maria Dolores Martínez Juan, Basilisa Martínez Palacios, Ignacio 
Martínez Varela, Juan Fernando Masa Jimenez, Joan Ramon Masclans, Emilio 
Maseda, Eva María Menor Fernández, Mar Miralbés, Josman Monclou, Juan 
Carlos Montejo‑González, Neus Montserrat, María Mora Aznar, Dulce Morales, 
Sara Guadalupe Moreno Cano, David Mosquera Rodríguez, Rosana Muñoz‑
Bermúdez, Guillermo Muñiz Albaiceta, José María Nicolás, Maria Teresa NIeto, 
Ramon Nogue Bou, Rafaela Nogueras Salinas, Marta Ocón, Ana Ortega, 
Sergio Ossa, Pablo Pagliarani, Francisco Parrilla, Josep‑Pedregosa‑Díaz, Yhivian 
Peñasco, Oscar Peñuelas, Leire Pérez Bastida, Purificación Pérez, Felipe Pérez‑
García, Gloria Pérez Planelles, Eva Pérez Rubio, David Pestaña Laguna, Àngels 
Piñol‑Tena, Javier Prados, Andrés Pujol, Juan Carlos Pozo, Núria Ramon Coll, 
Gloria Renedo Sanchez‑Giron, Jordi Riera, Pilar Ricart, Ferran Roche‑Campo, 
Alejandro Rodríguez, Laura Rodriguez, Felipe Rodríguez de Castro, Silvia Rod‑
ríguez, Covadonga Rodríguez Ruiz, Jorge Rubio, Alberto Rubio López, Ángela 
Leonor Ruiz‑García, Miriam Ruiz Miralles, Pablo Ryan Murúa, Eva Saborido 
Paz, Victor Sagredo, Ana Salazar Degracia, Inmaculada Salvador‑Adell, Miguel 
Sanchez, Ana Sánchez, Angel Sánchez‑Miralles, Susana Sancho Chinesta, Bitor 
Santacoloma, Miguel Sanchez, Maria Teresa Sariñena, Marta Segura Pensado, 
Lidia Serra, Mireia Serra‑Fortuny, Ainhoa Serrano Lázaro, Lluís Servià, Lorenzo 
Socias, Laura Soliva, Jordi Solé‑Violan, Fernando Suarez Sipmann, Carla Spezi‑
ale, Luis Tamayo Lomas, Adrián Tormos, Maria del Carmen de la Torre, Gerard 
Torres, Mateu Torres, Sandra Trefler, Josep Trenado, Javier Trujillano, Alejandro 
Úbeda, Luis Urrelo‑Cerrón, Estela Val, Manuel Valledor, Luis Valdivia Ruiz, Mont‑
serrat Vallverdú, Maria Van der Hofstadt Martin‑Montalvo, Sabela Vara Adrio, 
Nil Vázquez, Javier Vengoechea, Pablo Vidal, Clara Vilà‑Vilardel, Judit Vilanova, 
Tatiana Villada Warrington, Hua Yang, Minlan Yang, Ana Zapatero.

Author contributions
AC, CF, LB, MCR, AAB, ECD, SQ, OR, CC, and AA participated in protocol devel‑
opment, study design, study management, statistical analysis, and data inter‑
pretation. AC and CF participated in statistical analysis. AC, DGC, AM, LFB, JAL, 
JR, RF, OP, RM, FB, and AT participated in study design, and study management. 
CIBERESUCICOVID consortium participated in data collection. All authors read 
and approved the final manuscript.

Funding
Financial support was provided by the Instituto Carlos III de Madrid 
(COV20/00110, ISCIII) and by the Centro de Investigación Biomedica En Red 
– Enfermedades Respiratorias (CIBERES). AC acknowledges receiving financial 
support from Instituto de Salud Carlos III (ISCIII; Sara Borrell 2021: CD21/00087). 
DdGC has received financial support from Instituto de Salud Carlos III (Miguel 
Servet 2020: CP20/00041), co‑funded by the European Union. The fund‑
ing sources had no role in the design and conduct of the study; collection, 
management, analysis, and interpretation of the data; preparation, review, or 
approval of the manuscript; and in the decision to submit the manuscript for 
publication.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The study was approved by the institution’s Internal Review Board (Comité Ètic 
d’Investigació Clínica, registry number HCB/2020/0370), and written informed 
consent was obtained from either the patients or their relatives.

Consent for publication
Not applicable.

Competing interests
Dr. Roca reported a research grant from Hamilton Medical AG and Fisher & 
Paykel Healthcare Ltd., speaker fees from Hamilton Medical AG, Fisher & Paykel 
Healthcare Ltd., and Aerogen Ltd., and non‑financial research support from 
Timpel; all outside the submitted work. Minority stakeholder of Tesai Care SL, a 
spin‑off of Parc Taulí University Hospital. The other authors have no conflict of 
interest to report.

https://doi.org/10.1186/s13054-024-04876-5
https://doi.org/10.1186/s13054-024-04876-5


Page 11 of 12Ceccato et al. Critical Care           (2024) 28:91  

Author details
1 Critical Care Center, Hospital Universitari Parc Taulí, Institut d’Investigació 
i Innovació Parc Taulí (I3PT‑CERCA), Department of Medicine, Universitat 
Autonoma de Barcelona, Plaça Torre de L’Aigua, S/N, 08208 Sabadell, Spain. 
2 Centro de Investigación Biomédica en Red en Enfermedades Respiratorias 
(CIBERES), Instituto de Salud Carlos III, Madrid, Spain. 3 Intensive Care Unit, 
Hospital Universitari Sagrat Cor, Grupo Quironsalud, Barcelona, Spain. 4 Heorfy 
Consulting, Lleida, Spain. 5 Department of Basic Medical Sciences, Univer‑
sity of Lleida, Lleida, Spain. 6 Intensive Care and Laboratory of Experimental 
Intensive Care and Anesthesiology (LEICA), Amsterdam UMC Location AMC, 
University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands. 
7 Translational Research in Respiratory Medicine, Respiratory Department, Hos‑
pital Universitari Aranu de Vilanova and Santa Maria, IRBLleida, Lleida, Spain. 
8 Department of Pneumology, Hospital Clinic of Barcelona, August Pi i Sunyer 
Biomedical Research Institute–IDIBAPS, University of Barcelona, Barcelona, 
Spain. 9 Intensive Care Department, Hospital Universitari Vall d’Hebron, Vall 
d’Hebron Institut de Recerca, Barcelona, Spain. 10 Hospital Universitario de 
Getafe, Universidad Europea, Madrid, Spain. 11 Department of Bioengineering, 
Universidad Carlos III, Madrid, Spain. 12 Pulmonary Department, University 
and Polytechnic Hospital La Fe, Valencia, Spain. 13 Intensive Care Clinical Unit, 
Hospital Universitario Virgen de Rocío, Seville, Spain. 14 Servicio de Medicina 
Intensiva, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain. 15 Hospital Uni‑
versitario San Agustín, Asturias, Spain. 16 Hospital Santa Maria, IRBLleida, Lleida, 
Spain. 17 Hospital Universitario HM Montepríncipe, Facultad HM Hospitales de 
Ciencias de La Salud, Universidad Camilo Jose Cela, Madrid, Spain. 18 Servicio 
de Medicina Intensiva, Hospital Universitario Ramón y Cajal, Madrid, Spain. 
19 Intensive Care Unit, and Emergency Medicine, Universidad de Alcalá, Madrid, 
Spain. 20 Hospital Universitario de Cruces, Barakaldo, Spain. 21 Department 
of Intensive Care Medicine, Hospital Clínico Universitario Valladolid, Valladolid, 
Spain. 22 Critical Intensive Medicine Department, Hospital Universitari Arnau 
de Vilanova de Lleida, IRBLleida, Lleida, Spain. 23 Intensive Care Unit, Hospital 
Álvaro Cunqueiro, Vigo, Spain. 24 Intensive Care Unit, Hospital Clínico Universi‑
tario, Valencia, Spain. 25 Department of Intensive Care Medicine, Hospital Uni‑
versitario, 12 de Octubre, Madrid, Spain. 26 Hospital Universitario de Móstoles, 
Madrid, Spain. 27 Department of Critical Care Medicine, CHUS, Complejo Hos‑
pitalario Universitario de Santiago, Santiago, Spain. 28 Department of Intensive 
Care, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute 
(IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain. 29 Hospital de Mataró de 
Barcelona, Barcelona, Spain. 30 Department of Medicine, Intensive Care Unit 
University Hospital of Jerez, University of Cádiz, INIBiCA, Cádiz, Spain. 31 Unidad 
de Cuidados Intensivos, Hospital Universitario San Pedro de Alcántara, Cáceres, 
Spain. 32 Intensive Care Unit, Hospital San Juan de Dios del Aljarafe, Seville, 
Spain. 33 Intensive Care Clinical Unit, Hospital Universitario Virgen Macarena, 
Seville, Spain. 34 Hospital General Universitario Gregorio Marañón, Madrid, 
Spain. 35 Pulmonary and Critical Care Division, Emergency Department, Clínica 
Sagrada Família, Barcelona, Spain. 36 Intensive Care Department, Hospital 
Nuestra Señora de Gracia, Saragossa, Spain. 37 Unidad de Medicina Intensiva, 
Hospital Universitario Virgen de Valme, Seville, Spain. 38 Critical Care Depart‑
ment, Hospital del Mar‑IMIM, Barcelona, Spain. 39 Department of Intensive 
Medicine, Hospital Universitario Infanta Leonor, Madrid, Spain. 40 Hospital 
Universitario Torrejón‑Universidad Francisco de Vitoria, Madrid, Spain. 41 Criti‑
cal Care Department, Hospital Universitario Lucus Augusti, Lugo, Spain. 
42 Complejo Asistencial Universitario de Palencia, Palencia, Spain. 43 Depar‑
tamento de Biología Funcional, Instituto Universitario de Oncología del 
Principado de Asturias, Instituto de Investigación Sanitaria del Principado de 
Asturias, Hospital Central de Asturias, Universidad de Oviedo, Oviedo, Spain. 
44 Hospital General de Segovia, Segovia, Spain. 45 Servei de Medicina Intensiva, 
Hospital Universitari Son Espases, Palma, Illes Balears, Spain. 46 Servicio de 
Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, 
Spain. 47 UGC‑Medicina Intensiva, Hospital Universitario Reina Sofia,  Instituto 
Maimonides IMIBIC, Córdoba, Spain. 48 Servicio de Microbiología Clínica, Fac‑
ultad de Medicina, Departamento de Biomedicina y Biotecnología, Hospital 
Universitario Príncipe de Asturias ‑ Universidad de Alcalá, Alcalá de Henares, 
Madrid, Spain. 49 Centro de Investigación Biomédica en Red en Enfermedades 
Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain. 50 Servei 
de Medicina Intensiva, Hospital Universitari Germans Trias, Badalona, Spain. 
51 Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Verge de la Cinta, 
Tortosa, Tarragona, Spain. 52 Critical Care Department, Hospital Universitario 
Joan XXIII, CIBERES,  Rovira and Virgili University, IISPV,  Tarragona, Spain. 
53 Hospital Universitario de Salamanca, Salamanca, Spain. 54 Intensive Care 
Unit, Hospital Universitario Sant Joan d’Alacant, Sant Joan d’Alacant, Alicante, 

Spain. 55 Servicio de Medicina Intensiva, Hospital Universitario y Politécnico 
La Fe, Valencia, Spain. 56 Intensive Care Unit, Hospital Son Llàtzer, Illes Balears, 
Palma, Spain. 57 Critical Care Department, Hospital Universitario de GC Dr. 
Negrín, Universidad Fernando Pessoa Canarias, Las Palmas, Gran Canaria, 
Spain. 58 Intensive Care Unit, Hospital Universitario La Princesa, Madrid, Spain. 
59 Critical Care Department, Hospital Universitario Río Hortega de Valladolid, 
Valladolid, Spain. 60 Servicio de Medicina Intensiva, Hospital Universitario 
Mútua de Terrassa, Terrassa, Barcelona, Spain. 61 Servicio de Medicina Intensiva, 
Hospital Punta de Europa, Algeciras, Spain. 62 Hospital Universitario de León, 
León, Spain. 63 Complexo Hospitalario Universitario de Ourense, Orense, Spain. 
64 Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain. 65 Instituto 
de Investigación Biomédica de Salamanca (IBSAL), Gerencia Regional de Salud 
de Castilla y León, Salamanca, Spain. 66 Division of Pulmonary, Critical Care, 
Allergy and Sleep Medicine, Department of Medicine, University of California, 
San Francisco, San Francisco, CA, USA. 

Received: 25 January 2024   Accepted: 14 March 2024

References
 1. Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat 

A, et al. Acute respiratory distress syndrome. Nat Rev Disease Prim. 
2019;5(1):1–22.

 2. Villar J, Ferrando C, Martínez D, Ambrós A, Muñoz T, Soler JA, et al. 
Dexamethasone treatment for the acute respiratory distress syn‑
drome: a multicentre, randomised controlled trial. Lancet Respir Med. 
2020;8(3):267–76.

 3. Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone 
positioning in severe acute respiratory distress syndrome. N Engl J Med. 
2013;368(23):2159–68.

 4. Amato MBP, Barbas CSV, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi‑
Filho G, et al. Effect of a protective‑ventilation strategy on mortality in the 
acute respiratory distress syndrome. N Engl J Med. 1998;338(6):347–54.

 5. Acute Respiratory Distress Syndrome Network; Brower RG, Matthay 
MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower 
tidal volumes as compared with traditional tidal volumes for acute 
lung injury and the acute respiratory distress syndrome. N Engl J Med. 
2000;342(18):1301–8.

 6. RECOVERY Collaborative Group; Horby P, Lim WS, Emberson JR, Mafham 
M, Bell JL, et al. Dexamethasone in hospitalized patients with Covid‑19. N 
Engl J Med. 2021;384(8):693–704.

 7. Salama C, Han J, Yau L, Reiss WG, Kramer B, Neidhart JD, et al. Tocili‑
zumab in patients hospitalized with Covid‑19 pneumonia. N Engl J Med. 
2021;384(1):20–30.

 8. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. 
Remdesivir for the treatment of Covid‑19—final report. N Engl J Med. 
2020;383:NEJMoa2007764.

 9. Arabi YM, Gordon AC, Derde LPG, Nichol AD, Murthy S, Beidh FA, et al. 
Lopinavir‑ritonavir and hydroxychloroquine for critically ill patients with 
COVID‑19: REMAP‑CAP randomized controlled trial. Intensive Care Med. 
2021;47(8):867–86.

 10. Ceccato A, Camprubí‑Rimblas M, Campaña‑Duel E, Areny‑Balagueró A, 
Morales‑Quinteros L, Artigas A. Anticoagulant treatment in severe ARDS 
COVID‑19 patients. J Clin Med. 2022;11(10):2695.

 11. Perico L, Benigni A, Casiraghi F, Ng LFP, Renia L, Remuzzi G. Immunity, 
endothelial injury and complement‑induced coagulopathy in COVID‑19. 
Nat Rev Nephrol. 2021;17(1):46–64.

 12. Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA. 
Latent class analysis of ARDS subphenotypes: analysis of data from two 
randomized controlled trials. Lancet Respir Med. 2014;2(8):611–20.

 13. Calfee CS, Delucchi KL, Sinha P, Matthay MA, Hackett J, Shankar‑Hari M, 
et al. ARDS subphenotypes and differential response to simvastatin: 
secondary analysis of a randomized controlled trial. Lancet Respir Med. 
2018;6(9):691–8.

 14. Famous KR, Delucchi K, Ware LB, Kangelaris KN, Liu KD, Thompson BT, 
et al. Acute respiratory distress syndrome subphenotypes respond dif‑
ferently to randomized fluid management strategy. Am J Respir Crit Care 
Med. 2017;195(3):331–8.



Page 12 of 12Ceccato et al. Critical Care           (2024) 28:91 

 15. Sinha P, Calfee CS, Cherian S, Brealey D, Cutler S, King C, et al. Prevalence 
of phenotypes of acute respiratory distress syndrome in critically ill 
patients with COVID‑19: a prospective observational study. Lancet Respir 
Med. 2020;8(12):1209–18.

 16. Bos LDJ, Sjoding M, Sinha P, Bhavani SV, Lyons PG, Bewley AF, et al. Lon‑
gitudinal respiratory subphenotypes in patients with COVID‑19‑related 
acute respiratory distress syndrome: results from three observational 
cohorts. Lancet Respir Med. 2021;9(12):1377–86.

 17. Verhoef PA, Spicer AB, Lopez‑Espina C, Bhargava A, Schmalz L, Sims MD, 
et al. Analysis of protein biomarkers from hospitalized COVID‑19 patients 
reveals severity‑specific signatures and two distinct latent profiles with 
differential responses to corticosteroids*. Crit Care Med. 2023;51(12):1697.

 18. López‑Martínez C, Martín‑Vicente P, Gómez de Oña J, López‑Alonso I, 
Gil‑Peña H, Cuesta‑Llavona E, et al. Transcriptomic clustering of critically ill 
COVID‑19 patients. Eur Respir J. 2023;61(1):220.

 19. Torres A, Motos A, Ceccato A, Bermejo‑Martin J, de Gonzalo‑Calvo D, 
Pérez R, et al. Methodology of a large multicenter observational study of 
patients with COVID‑19 in Spanish intensive care units. Arch Bronconeu‑
mol. 2022;58(Suppl 1):22–31.

 20. The REDCap consortium: Building an international community of 
software platform partners ‑ ScienceDirect. 2023. Available from: https:// 
www. scien cedir ect. com/ scien ce/ artic le/ pii/ S1532 04641 93012 61

 21. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research 
electronic data capture (REDCap)—a metadata‑driven methodology and 
workflow process for providing translational research informatics sup‑
port. J Biomed Inform. 2009;42(2):377–81.

 22. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke 
JP, et al. The strengthening the reporting of observational studies in 
epidemiology (STROBE) statement: guidelines for reporting observational 
studies. Ann Intern Med. 2007;147(8):573–7.

 23. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, 
Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the 
Berlin Definition. JAMA. 2012;307(23):2526–33.

 24. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining 
H, et al. The SOFA (Sepsis‑related Organ Failure Assessment) score to 
describe organ dysfunction/failure. On behalf of the Working Group 
on Sepsis‑Related Problems of the European Society of Intensive Care 
Medicine. Intensive Care Med. 1996;22(7):707–10.

 25. Ankerst M, Breunig MM, Kriegel HP, Sander J. OPTICS: ordering points to 
identify the clustering structure. SIGMOD Rec. 1999;28(2):49–60.

 26. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and 
validation of cluster analysis. J Comput Appl Math. 1987;20:53–65.

 27. Handl J, Knowles J, Kell DB. Computational cluster validation in post‑
genomic data analysis. Bioinformatics. 2005;21(15):3201–12.

 28. Matthay MA, Arabi YM, Siegel ER, Ware LB, Bos LDJ, Sinha P, et al. Phe‑
notypes and personalized medicine in the acute respiratory distress 
syndrome. Intensive Care Med. 2020;46(12):2136–52.

 29. Seymour CW, Gomez H, Chang CCH, Clermont G, Kellum JA, Kennedy J, 
et al. Precision medicine for all? Challenges and opportunities for a preci‑
sion medicine approach to critical illness. Crit Care. 2017;21(1):257.

 30. Bos LDJ, Ware LB. Acute respiratory distress syndrome: causes, patho‑
physiology, and phenotypes. Lancet. 2022;400(10358):1145–56.

 31. Wilson JG, Calfee CS. ARDS Subphenotypes: Understanding a Heteroge‑
neous Syndrome. Crit Care. 2020;24(1):102.

 32. Seymour CW, Kennedy JN, Wang S, Chang CCH, Elliott CF, Xu Z, et al. Deri‑
vation, validation, and potential treatment implications of novel clinical 
phenotypes for Sepsis. JAMA. 2019;321(20):2003–17.

 33. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a 
novel understanding of the disorder and a new therapeutic approach. 
Lancet Infect Dis. 2013;13(3):260–8.

 34. Bermejo‑Martin JF, Cilloniz C, Mendez R, Almansa R, Gabarrus A, Cec‑
cato A, et al. Lymphopenic Community Acquired Pneumonia (L‑CAP), 
an Immunological phenotype associated with higher risk of mortality. 
EBioMedicine. 2017;24:231–6.

 35. Ceccato A, Panagiotarakou M, Ranzani OT, Martin‑Fernandez M, Almansa‑
Mora R, Gabarrus A, et al. Lymphocytopenia as a predictor of mortality in 
patients with ICU‑acquired pneumonia. J Clin Med. 2019;8(6):843.

 36. Delucchi K, Famous KR, Ware LB, Parsons PE, Thompson BT, Calfee CS, 
et al. Stability of ARDS subphenotypes over time in two randomised 
controlled trials. Thorax. 2018;73(5):439–45.

 37. Chen H, Yu Q, Xie J, Liu S, Pan C, Liu L, et al. Longitudinal phenotypes in 
patients with acute respiratory distress syndrome: a multi‑database study. 
Crit Care. 2022;26(1):340.

 38. Lu M, Drohan C, Bain W, Shah FA, Bittner M, Evankovich J, et al.Trajectories 
of host‑response subphenotypes in patients with COVID‑19 across the 
spectrum of respiratory support. CHEST Crit Care. 2023;1(3):100018.

 39. Sinha P, Neyton L, Sarma A, Wu N, Jones C, Zhuo H, et al. Molecular 
phenotypes of ARDS in the ROSE trial have differential outcomes and 
gene expression patterns that differ at baseline and longitudinally over 
time. Am J Respir Crit Care Med. 2024. https:// doi. org/ 10. 1164/ rccm. 
202308‑ 1490OC.

 40. Leisman DE, Ronner L, Pinotti R, Taylor MD, Sinha P, Calfee CS, et al. 
Cytokine elevation in severe and critical COVID‑19: a rapid systematic 
review, meta‑analysis, and comparison with other inflammatory syn‑
dromes. Lancet Respir Med. 2020;8(12):1233–44.

 41. Preud’homme G, Duarte K, Dalleau K, Lacomblez C, Bresso E, Smaïl‑
Tabbone M, et al. Head‑to‑head comparison of clustering methods 
for heterogeneous data: a simulation‑driven benchmark. Sci Rep. 
2021;11(1):4202.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://www.sciencedirect.com/science/article/pii/S1532046419301261
https://www.sciencedirect.com/science/article/pii/S1532046419301261
https://doi.org/10.1164/rccm.202308-1490OC
https://doi.org/10.1164/rccm.202308-1490OC

	Clustering COVID-19 ARDS patients through the first days of ICU admission. An analysis of the CIBERESUCICOVID Cohort
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Study design
	Study population and data collection
	Definitions
	Outcome
	Statistical analysis

	Results
	Discussion
	Conclusion
	Acknowledgements
	References


