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Abstract 

Background Acute respiratory distress syndrome (ARDS) poses challenges in early identification. Exhaled breath 
contains metabolites reflective of pulmonary inflammation.

Aim To evaluate the diagnostic accuracy of breath metabolites for ARDS in invasively ventilated intensive care unit 
(ICU) patients.

Methods This two-center observational study included critically ill patients receiving invasive ventilation. Gas chro-
matography and mass spectrometry (GC–MS) was used to quantify the exhaled metabolites. The Berlin definition 
of ARDS was assessed by three experts to categorize all patients into “certain ARDS”, “certain no ARDS” and “uncertain 
ARDS” groups. The patients with “certain” labels from one hospital formed the derivation cohort used to train a classi-
fier built based on the five most significant breath metabolites. The diagnostic accuracy of the classifier was assessed 
in all patients from the second hospital and combined with the lung injury prediction score (LIPS).

Results A total of 499 patients were included in this study. Three hundred fifty-seven patients were included 
in the derivation cohort (60 with certain ARDS; 17%), and 142 patients in the validation cohort (47 with certain ARDS; 
33%). The metabolites 1-methylpyrrole, 1,3,5-trifluorobenzene, methoxyacetic acid, 2-methylfuran and 2-methyl-
1-propanol were included in the classifier. The classifier had an area under the receiver operating characteristics curve 
(AUROCC) of 0.71 (CI 0.63–0.78) in the derivation cohort and 0.63 (CI 0.52–0.74) in the validation cohort. Combining 
the breath test with the LIPS does not significantly enhance the diagnostic performance.

Conclusion An exhaled breath metabolomics-based classifier has moderate diagnostic accuracy for ARDS 
but was not sufficiently accurate for clinical use, even after combination with a clinical prediction score.
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Introduction
Acute respiratory distress syndrome (ARDS) is a life-
threatening condition that causes acute hypoxemic res-
piratory failure due to exudative pulmonary edema [1]. 
Prevalence of ARDS in the intensive care unit (ICU) is 
around 10%, and hospital mortality ranges from 35 to 
45% [2]. Diagnosis of ARDS is based on timing, severity 
of hypoxemia, and presence of bilateral pulmonary infil-
trates, that is not fully explained by cardiac dysfunction 
or fluid overload [3]. Thus, assessment of ARDS is based 
on clinical criteria with considerable inter-observer het-
erogeneity resulting in subjectivity [4]. An alternative 
approach is needed.

Biological markers can provide objective evidence 
for the pathophysiological processes of various diseases 
and may shed light into the injurious processes leading 
to alveolar injury [1]. Biomarkers of alveolar injury have 
shown reasonable diagnostic accuracy for ARDS [5, 6]. 
However, these biomarkers are typically measured in 
plasma while the pathological processes of ARDS mainly 
occurs locally in the lung. As such, plasma biomarkers 
may poorly reflect alveolar processes and assessing bio-
markers directly from the lung may give a better indica-
tion [7].

Hundreds to thousands of volatile organic compounds 
(VOCs) can be identified in exhaled breath using gas 
chromatography–mass spectrometry (GC–MS). In a 
recent systematic review, a panel of VOC metabolites 
was identified as a promising method for ARDS diag-
nosis, showing high diagnostic accuracy and low bias 
[8]. Indeed, VOCs in exhaled breath offer a direct and 
real-time reflection of the comprehensive volatile meta-
bolic profile within the lungs. The non-invasive nature 
and bedside accessibility of VOC capture enhance their 
potential to serve as the perfect biomarker, concur-
rently enabling early detection and dynamic monitor-
ing capabilities. In recent years, numerous studies have 
delved into the diagnostic accuracy of those non-invasive 
markers in the detection of various respiratory diseases 
[9–13]. Among these, breath benzaldehyde, octane and 
3-methylheptane were previously identified as promising 
biomarkers for ARDS, yet their diagnostic accuracy did 
not withstand external validation [14–16].

In the present study, we aimed to evaluate the diag-
nostic accuracy of a novel exhaled breath metabolomics-
based classifier. We hypothesized that a data-driven 
classifier can accurately diagnose ARDS, also after exter-
nal validation. Considering the lack of a gold standard for 
ARDS diagnosis, we used the combined judgment of an 
expert panel as reference standard. Secondly, we hypoth-
esized that diagnostic accuracy improved when the clas-
sifier was combined with the lung injury prediction 
score (LIPS), a clinical classifier. Finally, we explored the 

relationship between VOCs in exhaled breath and plasma 
biomarkers in an attempt to elucidate a possible bio-
chemical origin of the VOCs we found in exhaled breath.

Methods
Study design and ethical consideration
This was a pre-planned secondary analysis of the DARTS 
project, a prospective multicenter observational cohort 
study aimed to evaluate the diagnostic accuracy of several 
imaging and biomarker tests for ARDS. This study used 
data from consecutive patients admitted to the ICUs of 
the Amsterdam UMC, location AMC and the Maastricht 
University Medical Center+ (MUMC +), two univer-
sity hospitals in the Netherlands [17]. The study enroll-
ment continued for two years, from March 26, 2019, to 
March 1, 2021. The Institutional Review Board of both 
centers waived the need for ethical approval of the pro-
tocol (W18_311#18.358 and 2019–1137). The study was 
registered with the “DARTS study” tag at the Dutch trial 
register (NL8226, www. trial regis ter. nl). Written informed 
consent was obtained from all patients or their relatives.

Patient recruitment
Consecutive adult patients with an expected duration of 
invasive ventilation of at least 24 h were recruited as soon 
as possible, but not later than 48  h, after starting inva-
sive ventilation in the ICU. The exclusion criteria were: 
(1) receiving 48 h of invasive ventilation during the seven 
days before inclusion, (2) tracheostomy, (3) life expec-
tancy less than 24 h, (4) lack of written informed consent.

Reference standard: ARDS diagnosis
ARDS was defined using the Berlin criteria [3]. To limit 
the influence of inter-observer variation on the ARDS 
labeling in this study, three experts scored the presence 
of ARDS independently based on a review of each clini-
cal case, which included data on comorbidities, ventilator 
and gas-exchange parameters and available chest imag-
ing [18]. Based on the available data, each expert scored 
their likelihood of ARDS from 1 (certain no ARDS) to 
8 (certain ARDS). By summarizing the scores, patients 
were categorized with a “certain” label when the experts 
agreed and with an “uncertain” label when there was 
disagreement or when the scores were equivocal. The 
patients with uncertain ARDS diagnosis were discussed 
in a consensus meeting to be classified into either “likely 
ARDS” or “likely no ARDS”. Assessment of the reference 
test was blinded for any results from the index test. The 
process of classification can be found in the supplement 
material (Description of ARDS classification procedure 
and Additional file 1: Table S1).

http://www.trialregister.nl
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Index test: exhaled breath analysis
As previously described in the DARTS protocol [17], 
the exhaled breath samples were collected by a breath 
gas sampler through a side-stream connection of a 
polytetrafluoroethylene (PTFE) tube on the expiratory 
limb after the heat and moisture exchange (HME) fil-
ter with a flow of 200 mL/min, and the collection lasted 
for 6  mins. In this way, VOCs in exhaled breath were 
absorbed onto the sorbent tubes and the tubes were 
stored and subsequently analyzed within 2  weeks. 
During the first 48  h of invasive mechanical ventila-
tion, a first breath sample was drawn, followed by a 
second sample on the following day. The sorbent tubes 
were heated to 250 degrees Celsius (Markes, TD100), 
focused on a cold trap and rapidly injected onto an 
Inertcap 5MS/Sil GC column with a flow of 1.2  mL/
min. In the mass-spectrometer, compounds were frag-
mented using electron ionization and a quadrupole 
mass spectrometer detected the fragment ions. The 
base peak of each VOC constituted a new variable and 
was used as independent predictor variable in the sub-
sequent analyses [19]. Patients whose breath sample 
analyses were unsuccessful due to technical malfunc-
tions in the GCMS machine, rendering it inoperable for 
the analyses, were excluded from the study.

Additional biomarker testing
Blood samples were collected for plasma biomarker 
analysis. Biomarkers were measured using a Luminex 
multiplex assay (R&D systems, Abington, UK) and Bio-
plex 200 (Bio-Rad, Hercules, California, USA) accord-
ing to the manufacturer’s protocols.

Sample size justification
This was a secondary analysis of the DARTS project, 
which included more than 500 patients to assess ARDS 
diagnosis. To ensure sufficient statistical power of this 
analysis, the sample size of the patients with certain 
diagnosis in the derivation cohort was calculated ret-
rospectively using the pmsampsize package in Rstudio 
(version 4.0.3) [20, 21]. With an expected C-statistic 
(AUROCC) of 0.90 and a prevalence of ARDS of 10.4% 
in ICU, the sample size should reach 179 for a model 
when we choose five independent variables as predic-
tion parameters [2]. The sample size of the validation 
cohort was given based on the number of inclusions in 
the Maastricht hospital.

Statistical analysis
Patients recruited in AMC with certain labels were 
allocated to the derivation cohort to develop a classi-
fier (called “VOC-ARDS score”), while patients with 

“certain” labels who were recruited in Maastricht acted 
as the validation cohort to evaluate its performance. 
The two datasets were kept independent of each other.

To select the best predictors, a random forest model 
with the log10 transformed ion count of the base peak of 
all VOCs as predictive variables was trained in the deri-
vation cohort (caret package) [22]. Combining the results 
of variable importance ranking both in mean decrease in 
Gini plot and mean decrease in accuracy plot (random-
Forest package) [23], the top five most important VOCs 
were identified. The selected VOCs were included as 
independent variables in a logistic regression model. The 
VOC-ARDS score was derived by the sum of selected 
variables multiplied by their corresponding coefficient.

The discriminative performance of this model was eval-
uated using the area under the receiver operating charac-
teristic curve (AUROCC) with 95% confidence intervals. 
As newly derived multivariable diagnostic scores are 
prone to overfitting, we tested the diagnostic accuracy 
of the VOC-ARDS score in the validation cohort. To get 
a reliable estimate of accuracy, we included all patients, 
also when the three experts had conflicting or uncertain 
classifications for ARDS. As a sensitivity analysis, this 
comparison was repeated for the second sample to assess 
the stability of the discrimination over time. In order to 
integrate biological data with the clinical patients’ risk, 
the lung injury prediction score (LIPS) was added as a 
covariate to the logistic regression and improvements in 
the diagnostic accuracy were evaluated, the difference 
between AUROCCs were compared using roc.test() func-
tion with “bootstrap” method using the pROC package 
[24]. Linear regression was used to quantify the associa-
tion between the selected VOCs with plasma biomarkers 
that had previously been linked to the pathophysiologi-
cal processes involved in ARDS development. To identify 
patterns in the data, the correlation coefficients between 
VOCs and plasma biomarkers were visualized in a 
heatmap.

Data are expressed as median (interquartile range) 
for continuous variables and number (%) for categori-
cal variables. Differences between groups were tested by 
the Mann–Whitney U test or the Fisher’s exact test, as 
appropriate. A p value < 0.05 was considered statistically 
significant. All data analysis was performed in R studio 
(version 4.0.3).

Results
Included patients
A total of 499 patients were included in this study, of 
whom 357 patients were recruited from AMC (AMC 
cohort) and 142 patients were from MUMC + (MUMC 
cohort). Sixty (17%) patients recruited in AMC and 47 
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patients (33%) recruited in MUMC + were classified as 
having certain ARDS (Fig.  1). A total of 250 patients in 
AMC cohort had certain labels and were used for model 
derivation. From all the included patients, the diagnosis 
of ARDS remained uncertain in one third of them, and 
approximately half of these patients were finally classified 
as likely having ARDS in a consensus meeting (Fig.  1). 
Patient characteristics and ventilation parameters of the 
patient cohort used to derive and validate the model are 
presented in Table 1 and supplemental Additional file 1: 
Table S2, respectively.

Development of the classifier
The random forest variable importance analysis resulted 
in the selection of five VOCs: 1-methylpyrrole [Chemical 
Abstracts Service (CAS): 96–54-8], 1,3,5-trifluoroben-
zene (CAS: 372–38-3), methoxyacetic acid (CAS: 
625–45-6), 2-methylfuran (CAS: 534–22-5), 2-methyl-
1-propanol (CAS: 78–83-1; Additional file  1: Figure 
S1) and those were included in a multivariable logistic 
regression model. The coefficients of these parameters 
and the diagnostic prediction model derived VOC-ARDS 
score are presented in supplemental Additional file  1: 
Table  S3. The relative abundance of the selected five 

Fig. 1 Flowchart of screening and inclusion process. MV Mechanical ventilation, GCMS Gas chromatography-mass spectrometry, ARDS Acute 
respiratory distress syndrome



Page 5 of 11Zhang et al. Critical Care           (2024) 28:96  

Table 1 Characteristics of the patient cohort used to derive the VOC-ARDS score

Certain ARDS labels in AMC

ARDS (n = 60) Non-ARDS (n = 190) P value

Patients characteristics

Age, years mean (SD) 60.2 (13.8) 61.8 (16.1) 0.47

Male, n (%) 45 (75) 130 (68) 0.419

Smoker, n (%) 48 (80) 146 (77) 0.738

BMI, kg/m2 median [IQR] 26.9 [23.7, 30.7] 25.8 [23.0, 30.0] 0.191

Admission characteristics

Admission type, n (%) 0.001

Emergency surgical 2 (3.3) 37 (19.5)

Medical 54 (90.0) 123 (64.7)

Planned surgical 4 (6.7) 30 (15.8)

Admission condition, n (%)

Trauma 2 (3.3) 34 (17.9) 0.01

Neurosurgery 2 (3.3) 39 (20.5) 0.003

Shock 1 (1.7) 15 (7.9) 0.157

Extrapulmonary sepsis 3 (5.0) 31 (16.3) 0.044

Pancreatitis 0 (0.0) 3 (1.6) 0.765

Comorbidities, n (%)

Diabetes 13 (21.7) 35 (18.4) 0.713

Active malignancy 11 (18.3) 22 (11.6) 0.259

Immunocompromised 5 (8.3) 10 (5.3) 0.575

Cause of ARDS, n (%)  < 0.001

Non pulmonary 4 (6.7) –

Pulmonary 56 (93.3) –

ARDS severity, n (%)  < 0.001

Mild 3 (5.0) –

Moderate 30 (50.0) –

Severe 27 (45.0) –

Pneumonia, n (%) 54 (90.0) 28 (14.7)  < 0.001

Covid-19, n (%) 29 (48.3) 2 (1.1)  < 0.001

Apache II score, median [IQR] 20 [15, 22] 21 [15, 26] 0.023

SOFA score, median [IQR] 8 [5, 12] 10 [8, 12] 0.011

LIPS, median [IQR] 6 [6, 8] 5 [3, 6]  < 0.001

Pre-ICU LOS, days median [IQR] 2 [0, 5] 1 [0, 3] 0.227

Mechanical ventilation and gas exchange, median [IQR]

P max,  cmH2O 23 [18, 28] 18 [14, 22]  < 0.001

PEEP,  cmH2O 10 [8, 12] 5 [5, 8]  < 0.001

Driving pressure,  cmH2O 12 [8, 17] 12 [8, 15] 0.458

VT, mL 518 [386, 624] 470 [402, 532] 0.162

VT/PBW, ml/kg 7.8 [6.3, 9.3] 7.1 [6.2, 8.6] 0.068

Compliance, mL/cmH2O 34.5 [24.1, 51.5] 36.8 [27.6, 57.8] 0.173

RR, breaths/min 21 [16, 28] 18 [15, 23] 0.006

PaO2/FiO2, mmHg† 105 [81, 142] 263 [169, 336]  < 0.001

Duration MV, hours 20 [10, 32] 22 [12, 32] 0.671

Outcomes

ICU LOS, days median [IQR] 9 [6, 19] 6 [3, 11]  < 0.001

Hospital LOS, days median [IQR] 19 [10, 31] 16 [8, 31] 0.394

ICU mortality, n (%) 25 (41.7) 60 (31.6) 0.2

30d mortality, n (%) 25 (41.7) 70 (36.8) 0.604
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VOCs in patients with different diagnostic classifications 
is also presented (Additional file 1: Figure S2).

Diagnostic accuracy of VOC-ARDS score
In the derivation cohort, which included patients with 
certain ARDS labels only, the diagnostic accuracy of 
VOC-ARDS score was acceptable (AUROCC of 0.71, 
CI 0.63–0.78; Fig.  2A). When patients who had uncer-
tain labels based on conflicting evaluations by the expert 
panel were also considered, the VOC-ARDS score 
showed an AUROCC of 0.67 (CI 0.61–0.73; Additional 
file 1: Figure S3 and Table S4).

To validate the diagnostic performance of VOC-
ARDS score in a new population, we applied the identi-
cal logistical regression model on the validation cohort. 
The diagnostic accuracy was lower (AUROCC of 0.63, 
CI 0.52–0.74; Fig.  2C), and the diagnostic accuracy 
decreased further when patients in MUMC cohort with 
uncertain labels were also considered (AUROCC of 0.58 
CI 0.48–0.67; Additional file 1: Figure S3 and Table S5). 
Calibration of the VOC-ARDS score is shown in Addi-
tional file 1: Figure S4. In a sensitivity analysis using the 
second breath sample to test the diagnostic accuracy of 
the VOC-ARDS score, similar results were obtained 
(Additional file 1: Figure S5).

Combination with LIPS
The diagnostic accuracy of the LIPS for ARDS had an 
AUROCC of 0.67 (CI 0.62–0.71), in a similar range as 
the VOC-ARDS score. The accuracy of the VOC-ARDS 
score was significantly but marginally increased from 
0.65 (CI 0.60–0.70) to 0.70 (CI 0.66–0.75) when LIPS 
was added to the model (P < 0.01, Fig. 2E and F). Similar 
changes were seen when data were split for the derivation 
and validation cohort (Fig. 2B and D).

Comparison with plasma biomarkers
Plasma samples from 308 patients (including 70 patients 
with certain ARDS, 148 certainly without ARDS and 

90 patients with “uncertain” label) were collected and 
included in the biomarkers analysis (Additional file  1: 
Table  S6). No strong significant correlation was found 
between the concentrations of the selected five VOCs 
and the measured plasma markers. The level of Krebs von 
den Lungen-6 (KL-6) in plasma was observed to have a 
weak negative correlation with the concentrations of the 
VOCs, correlation coefficients ranging from −  0.218 to 
− 0.103 (Fig. 3, Additional file 1: Table S7).

Discussion
In this study, we derived and validated an exhaled breath 
metabolomics-based classifier to diagnose ARDS in a 
multicenter setting. The results of this study demonstrate 
that the exhaled breath patterns differ between patients 
with and without ARDS, but that the diagnostic accuracy 
of a model that captures these differences is insufficient 
for use in clinical practice. When combining the classi-
fier with clinical information, in the form of the LIPS, the 
discriminating capacity slightly improved but remained 
insufficient. We observed a weak correlation between the 
selected breath metabolites and plasma biomarker of epi-
thelial injury, suggesting that this process may contribute 
to the observed biological differences.

Several studies have evaluated the diagnostic poten-
tial of exhaled breath metabolomics for ARDS and have 
reported higher accuracies than those reported here [13, 
25, 26]. However, this multicenter study with the largest 
sample size, utilizing GC–MS to identify exhaled metab-
olites, offers a superior design compared to previous 
research. Prior studies encountered limitations, including 
single-center setting and small patient cohorts, leading 
to challenges in replicating high diagnostic accuracy [15, 
16, 26]. More recently, Heijnen et al. tested the diagnostic 
accuracy of octane and acetaldehyde in exhaled breath to 
identify ARDS in critically ill patients suspected of ven-
tilator-associated pneumonia and also found a low diag-
nostic accuracy [13]. In line with these results, exhaled 
breath profiling with an electronic nose did provide low 

Data are presented as n (%), median [IQR] or mean (SD). P values were calculated using Chi-square, T test or Mann–Whitney U test depending on the type and 
distribution of the variable. PBW is calculated as: PBW male = 50 + 0·91 * (cm of height—152·4) and PBW female = 45·5 + 0·91 * (cm of height—152·4)
† PF ratio worst measured in the 24 h before sampling

ARDS Acute respiratory distress syndrome, BMI Body mass index, APACHE II Acute physiology and chronic health evaluation II, SOFA Sequential organ failure 
assessment, LIPS Lung injury prediction score, ICU Intensive care unit, LOS Length of stay, PaO2 Partial pressure of oxygen, FiO2 Fraction of inspired oxygen, MV 
Mechanical ventilation, PEEP Positive end-expiratory pressure, RR Respiratory rate. Vt Tidal volume, PBW Predicted body weight

Table 1 (continued)

Certain ARDS labels in AMC

ARDS (n = 60) Non-ARDS (n = 190) P value

90d mortality, n (%) 27 (45.0) 74 (38.9) 0.495

1 year mortality, n (%) 27 (45.0) 76 (40.0) 0.592
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Fig. 2 Receiver operating characteristics (ROC) curve per metabolite that were included in the VOC-ARDS score classifier and the combined 
VOC-ARDS classifier with the lung injury prediction score (LIPS) for each cohort. A–B in the derivation cohort. C–D in the validation cohort. E–F: 
in all the included patients. Mey 1-methylpyrrole, Tri 1,3,5-trifluorobenzene, Mea Methoxyacetic acid, Fur 2-methylfuran, Mep 2-methyl-1-propanol, 
AUC  Area under curve, VOCs Volatile organic compounds, LIPS Lung injury prediction score
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diagnostic accuracy [25]. Taken together, we should treat 
exhaled breath diagnostic tests for ARDS cautiously and 
await extensive independent validation in sufficient sam-
ple size before accepting a test.

The sufficient to good diagnostic accuracy observed in 
this study is lower than the accuracy of some other non-
invasive diagnostic tests, such as plasma biomarkers and 
lung ultrasound [27–29]. A recent systematic review on 
the topic concluded that a higher risk of bias contributed 

to a higher observed diagnostic accuracy, as the median 
AUROCC was 0.84 for high-bias studies and 0.75 for the 
low-bias studies [8]. In the latter category, two plasma 
biomarkers (Club cell protein 16 and soluble receptor 
for advanced glycation end-products) and two panels 
of breath metabolites were found to discriminate ARDS 
patients with good accuracy [15, 26, 30, 31]. We could 
not validate the diagnostic accuracy of such breath tests 
here. Yet, the identified exhaled breath metabolites were 
weakly correlated with the biomarker of alveolar injury, 
suggesting that they could reflect changes in the com-
partment of interest.

In the present study, we identified five VOCs with 
decreased concentrations in ARDS patients: 1-meth-
ylpyrrole, 1,3,5-trifluorobenzene, methoxyacetic acid, 
2-methylfuran, and 2-methyl-1-propanol. Most of these 
molecules cannot be attributed to the process of metabo-
lism in human body. Instead, they have been more com-
monly associated with microbial metabolism such as the 
production of branched acetic acids by Staphylococcus 
aureus [32], a common pathogen found in the respiratory 
tract of ICU patients. Additionally, 2-methyl-1-propanol 
and 2-methylfuran are often reported as fungal metabo-
lites in previous literatures [33–35], and the latter can 
also be produced by some bacterial strains [36]. The pre-
vious studies have suggested that the metabolite compo-
sition of COVID patient’s exhaled breath is different from 
that of healthy subjects [37, 38]. In our study, the propor-
tion of COVID patients in ARDS group is significantly 
higher than in the control group, which could affect the 
breath profiles of the patients in ARDS group and thus 
be different from the control group. We are unsure about 
the metabolic origin of 1-methylpyrrole. Taken together, 
the identification of these particular VOCs as biomark-
ers for ARDS might reflect an association between the 
respiratory volatile metabolome and the microbiome, 
which is in line with previous studies on this topic [39, 
40]. Additional factors may include exogenous sources. 
For example, 2-methylfuran is a constituent of cigarette 
smoke and has previously been found in the exhaled 
breath of smokers [41, 42]. Fluor compounds like trif-
luorobenzene are most likely from an industrial source 
and could be regarded as the contamination of breath.

All discriminative VOCs were found in lower con-
centrations in ARDS patients compared to non-ARDS 
patients. This contrasts to previous observations and 
the cause is yet unclear, although several hypotheses 
arise. First, the lung microbiome might be altered by 
host response mechanisms, changes in local metabo-
lites due to pulmonary edema and the administration of 
drugs. Such alterations to the lung microbiome composi-
tion might explain differences in exhaled VOC profiles, 
certainly considering the types of molecules identified 

Fig. 3 The association between exhaled breath VOCs and plasma 
biomarker levels. Every correlation coefficient between two variables 
was calculated using spearman correlation, color depth of each 
box indicates the correlation strength. Mey 1-methylpyrrole, Tri 
1,3,5-trifluorobenzene, Mea Methoxyacetic acid, Fur 2-methylfuran, 
Mep 2-methyl-1-propanol. Ang-1 Angiopoietin-1, Ang-2 
Angiopoietin-2, Ang2/1 The ratio of Angiopoietin-1/ Angiopoietin-2, 
CC-16 = Club (Clara) cell protein 16, VEGF Vascular endothelial growth 
factor, GM-CSF Granulocyte–macrophage colony-stimulating factor, 
ICAM Intercellular adhesion molecule, IFN Interferon, IL Interleukin, 
KL-6 Krebs von den Lungen-6, MMP-8 Matrix metalloproteinase-8, 
PAI-1 Plasminogen activator inhibitor-1, RAGE Receptor for advanced 
glycation end-products, SP-D Surfactant protein-D, TNF 
Tumor-necrosis factor, TNF RI Tumor-necrosis factor receptor 1, VCAM 
Vascular adhesion molecule, VEGF Vascular endothelial growth factor, 
vWF Von Willebrand Factor
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in the current study. A second hypothesis is that the 
molecules originate from the systemic circulation and 
that decreased diffusion and ventilation-perfusion mis-
match result in less exchange of these gasses, resulting 
in lower exhaled concentrations. This is evidenced in the 
current study by the negative correlation between the 
selected VOCs and plasma KL-6, a biomarker expressed 
on the surface of alveolar type II cells following epithe-
lial cell damage and linked to diagnosis and prognosis of 
ARDS [6, 43]. As such, an elevated KL-6 likely represents 
increased alveolar injury and worsened gas exchange 
that might explain the reduced concentration of the 
selected VOCs observed in the present study. However, 
we were unable to draw definitive conclusions regarding 
the underlying mechanisms due to the lack of a strong 
association both between the exhaled VOCs and plasma 
biomarkers, as well as between the abundance of exhaled 
VOCs and ARDS diagnosis. A final, more skeptical the-
ory would be that all observed associations can be attrib-
uted to false-discovery. Although the validation of the 
biomarker score in a validation cohort limits this possi-
bility, we have previously experienced this problem when 
discovering and validating octane as a breath biomarker 
for ARDS [15, 16].

As discussed earlier, we attempted to limit all risks 
of bias that could have overestimated the diagnostic 
accuracy in this study. Yet, several potential limitations 
remained. First, there are inherent difficulties with 
the clinical diagnosis of ARDS and there is no ground 
truth. Patients did not receive histopathology exami-
nation of lung tissue due to the limitations of clinical 
practice and if they had, there would remain consider-
able discussion on how to classify ARDS [18]. However, 
we tried to avoid the influence of single observers in the 
diagnosis of ARDS by using multiple observers to gain 
consensus. Second, ARDS is considered to be a heter-
ogeneous condition, and it may be impossible to cap-
ture one biological signal to uniformly classify patients 
who have different pathophysiological abnormalities 
[44]. Moreover, it is necessary to recognize the inher-
ent technological constraints that are inevitably pre-
sent during the sample processing. We sampled after 
the HME filter because high water vapor pressure in 
exhaled breath would result in loading of high concen-
trations of water on the sorbent medium and transfer 
it to the GC column resulting poor peak differentiation 
during gas chromatography, decay of the column and 
retention time shift that would limit the comparison of 
GC results over long periods of time required for the 
inclusion of a large number of patients. Although the 
VOCs in exhaled breath we were interested are not eas-
ily soluble in water and would not be captured by the 

water in the HME, we cannot exclude minor differ-
ences in our conclusions due to the selected sampling 
method. Additionally, the absence of positive find-
ings in this study merely suggests that exhaled VOCs 
may not suffice as a reliable classifier for identifying 
ARDS patients. However, it is important to acknowl-
edge the potential intriguing biological information 
within exhaled breath. Future investigations may con-
sider exploring metabolites and proteins captured 
by the HME filter, which extend beyond the realm of 
VOCs. Furthermore, our GC–MS analysis captured 
248 metabolites, and thus, does not encompass the 
entirety of metabolites present in nature, which could 
potentially result in the omission of certain meaningful 
metabolites that might contribute to the identification 
of ARDS. Finally, we only evaluated the performance of 
the breath test alone and in combination with a clinical 
prediction score (LIPS). We therefore cannot exclude 
that the identified markers have more diagnostic value 
when combined with other biological, physiological or 
imaging data.

The presented data imply that exhaled breath metab-
olomics is unsuitable as a stand-alone diagnostic test 
for ARDS. Due to the heterogeneous nature of the con-
dition and the observed correlation between exhaled 
breath metabolites and the marker of alveolar injury, 
they might be better suited to the identification of 
ARDS subphenotypes. Before we can link the exhaled 
breath metabolites to subphenotypes, we need more 
in-depth knowledge on their biochemical origin and 
the pathophysiological processes they represent. Up to 
this point, we should be cautious interpreting results 
of exhaled breath analysis studies and in particular 
exhaled breath analysis for diagnosis in ARDS.

To conclude, an exhaled breath metabolomics-based 
classifier has a sufficient diagnostic accuracy for ARDS 
but is not good enough for use in clinical practice. 
Combining this classifier with a clinical prediction 
score slightly improved its diagnostic accuracy, yet it 
remained too low for clinical practice.
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