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Abstract 

Background  This study aimed to develop an automated method to measure the gray-white matter ratio (GWR) 
from brain computed tomography (CT) scans of patients with out-of-hospital cardiac arrest (OHCA) and assess its 
significance in predicting early-stage neurological outcomes.

Methods  Patients with OHCA who underwent brain CT imaging within 12 h of return of spontaneous circulation 
were enrolled in this retrospective study. The primary outcome endpoint measure was a favorable neurological 
outcome, defined as cerebral performance category 1 or 2 at hospital discharge. We proposed an automated method 
comprising image registration, K-means segmentation, segmentation refinement, and GWR calculation to measure 
the GWR for each CT scan. The K-means segmentation and segmentation refinement was employed to refine the seg‑
mentations within regions of interest (ROIs), consequently enhancing GWR calculation accuracy through more precise 
segmentations.

Results  Overall, 443 patients were divided into derivation N=265, 60% and validation N=178, 40% sets, based on age 
and sex. The ROI Hounsfield unit values derived from the automated method showed a strong correlation with those 
obtained from the manual method. Regarding outcome prediction, the automated method significantly outper‑
formed the manual method in GWR calculation (AUC 0.79 vs. 0.70) across the entire dataset. The automated method 
also demonstrated superior performance across sensitivity, specificity, and positive and negative predictive values 
using the cutoff value determined from the derivation set. Moreover, GWR was an independent predictor of out‑
comes in logistic regression analysis. Incorporating the GWR with other clinical and resuscitation variables significantly 
enhanced the performance of prediction models compared to those without the GWR.

Conclusions  Automated measurement of the GWR from non-contrast brain CT images offers valuable insights 
for predicting neurological outcomes during the early post-cardiac arrest period.
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Background
Despite considerable resuscitation effort, patients with 
out-of-hospital cardiac arrest (OHCA) may develop mild 
to severe hypoxic-ischemic encephalopathy. This condi-
tion can lead to variant neurological deficits, including 
comatose status, imposing significant burdens on family 
members and physicians, both medically and economi-
cally. Hypoxic-ischemic encephalopathy induces brain 
edema, decreased cortical gray matter attenuation, or loss 
of normal gray/white differentiation [1]. Hence, early pre-
diction of neurological prognosis is crucial for patients 
who have experienced cardiac arrest. Several methods for 
assessing neurological status following resuscitation and 
the return of spontaneous circulation (ROSC) have been 
proposed in clinical practice. These include neurologi-
cal examination, brain non-contrast computed tomog-
raphy (CT), somatosensory evoked potential (SSEP), 
serum biomarkers, electroencephalography (EEG), and 
diffusion-weighted magnetic resonance imaging (DW-
MRI) [1–6]. Recent guidelines have proposed brain non-
contrast CT as an early prognostic tool to be utilized 
within 24–72 h after ROSC [6–11]. During the early post-
cardiac arrest period, the gray-white matter ratio (GWR) 
emerges as one of the important indicators of hypoxic-
ischemic encephalopathy  [12–16]. However, emergency 
or intensive care physicians cannot perform the quantita-
tive measurement of the GWR using a bedside imaging 
system. Therefore, measurement should be conducted 
subjectively and manually at the working station in the 
radiology department upon request. Nonetheless, an 
enhanced and objective measurement of the GWR would 
improve the clinical evaluation and prognostication of 
hypoxic-ischemic encephalopathy [17, 18].

Hanning et al.  [19] proposed an automated, observer-
independent probabilistic gray-white matter segmen-
tation algorithm to predict the outcome of 84 patients 
following cardiac arrest. In 2020, Hannawi et  al.  [20] 
developed an automated algorithm to compute the GWR 
using image registration and atlas segmentation. Simi-
larly, in 2021, Kenda et  al.  [21] also proposed a compa-
rable method for assessing brain CT scans. However, the 
accuracy of previous methods significantly relied on pre-
cise registration. Although Hannawi et al. [20] addressed 
artifacts and cerebrospinal fluid (CSF) pulsation by 
excluding Hounsfield unit (HU) values ≤ 15, none of the 
studies adjusted atlas segmentation to account for the dif-
ference between the gray and white matter. Furthermore, 
studies of this nature are rare and most of them were lim-
ited to a small dataset. The methodologies proposed in 
previous studies remain unapplied in clinical practice.

Therefore, this study aimed to predict favorable neuro-
logical outcomes by developing an automated method for 
quantifying the GWR using brain CT scans during the 

early post-cardiac arrest period, which included image 
registration and incorporated various pre-processing and 
post-processing steps. Furthermore, we compared the 
performance between the automated method and man-
ual methods for measuring the GWR. We also evaluated 
the effectiveness of incorporating the GWR into a multi-
modal model to enhance the predictive accuracy during 
the early post-cardiac arrest period.

Methods
Study population and setting
The data were collected retrospectively from the Inte-
grated Medical Database of National Taiwan University 
Hospital (NTUH-iMD) from January 2009 to December 
2019. National Taiwan University Hospital—a tertiary 
medical center—typically saw approximately 100,000 
emergency department visits per year. Eligible patients 
included the following: (1) adult patients who experi-
enced non-traumatic OHCA, (2) treated in the emer-
gency department, and (3) successfully resuscitated 
with ROSC. Overall, 544 patients underwent brain CT 
imaging within 12  h after ROSC and were enrolled in 
the study. The Institutional Review Board of National 
Taiwan University Hospital approved this study, along 
with a waiver of informed consent from the patients’ 
relatives or physicians, on October 6, 2020 (IRB No. 
202004037RINA, Study title: Prognosis and treatment 
evaluation of post-cardiac arrest patients—a multimodal, 
autonomic, neuroprognostic model). All procedures per-
formed in this study adhered to the ethical standards set 
by the responsible committee on human experimentation 
(institutional or regional) and the Declaration of Helsinki 
in 1975.

Patient data acquisition and outcome measurement
All medical history and details of cardiac arrest events 
were coded in accordance with the Utstein style and 
extracted from the electronic ambulance and medical 
records. This included patient characteristics, interven-
tions provided, and outcomes. To predict the outcome 
in the early post-cardiac arrest period, variables such 
as age, sex, pre-existing comorbidities, initial rhythm, 
resuscitation events, non-contrast brain CT findings, 
hemodynamic parameters, and laboratory results fol-
lowing ROSC were included for further analysis. Brain 
CT adhered to the post-cardiac arrest care protocol of 
the medical center during the study period. Briefly, non-
contrast brain CT scans were performed when vital signs 
were relatively stable after ROSC. Patients were sent to 
the CT examination room after providing informed con-
sent for CT scan studies. The average time to undergo 
CT after resuscitation was 103± 77 min (median [inter-
quartile range, IQR] = 88 [64 − 115]).
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The outcome endpoints included favorable neurologi-
cal outcomes at hospital discharge, which were defined 
as cerebral performance category (CPC) scores of 1 or 
2 and survival to hospital discharge. The CPC score is a 
validated 5-point scale indicating neurological disabil-
ity (CPC 1: good cerebral performance; CPC 2: moder-
ate cerebral disability; CPC 3: severe cerebral disability; 
CPC 4: coma/vegetative state; and CPC 5: brain death). 
Patients with a CPC score of 1 or 2 generally exhibited 
adequate cerebral function to live independently. With-
drawal of life sustaining therapy before hospital discharge 
adhered to the protocol of the medical center. Briefly, at 
least two attending physicians evaluated the neurological 
status by examining pupillary light reflexes, spontaneous 
respiratory drives, and 24-lead electroencephalograms 
within 7 days after cardiac arrest. Initial brain CT images 
were not routinely used but could be referenced by physi-
cians during the evaluation process. Decisions regarding 
the withdrawal of life sustaining therapy were made after 
discussing with the family of the patients with cardiac 
arrest in a comatose state.

Brain CT image analysis and GWR acquisition
GWR calculation formulas
This study focused on two GWR calculation formulas: 
GWR at the basal ganglia level (GWR_b) and a simplified 
version, GWR_s. GWR_b was determined by summing 
the HU values of the caudate nuclei (CN) and putamen 
(PU), then dividing by the sum of HU values of the pos-
terior limb of the internal capsule (PIC) and corpus cal-
losum (CC) in Eq. 1. The simplified GWR (GWR_s) was 
calculated as the HU value of the PU divided by the HU 
value of the PIC, as shown in Eq. 2. The simplified GWR 
was proposed and compared in the study owing to the 
well-localized characteristics of these two areas in the 
brain CT images.

Manual method
The GWR was manually measured to compare its effi-
cacy in predicting outcomes with that of the automati-
cally computed GWR. Following the methodologies of 
previous studies [22–24], eight regions of interest (ROIs) 
at the basal ganglia level, including the CC, CN, PU, and 
PIC, were selected for annotation, (Fig.  1a). Two emer-
gency or critical care physicians who were blinded to the 
outcomes annotated each circular region. The process 
involved one doctor providing their assessment initially, 
and the other doctor subsequently reviewing and verify-
ing the findings. If disagreement persists, a third physi-
cian, also blinded to the outcomes, would make the final 
decision. The area for each circular region was approxi-
mately 10 mm2 . The HU for each circular region was 
calculated by averaging all pixels within the region. The 
physicians were blinded to the clinical data, survival, and 
neurological outcomes of the patients before and during 
the manual annotation of brain CT images.

Automated method
An automated method was developed to calculate the 
GWR of head CT scans. Our method comprised four 
steps: image registration, K-means segmentation, seg-
mentation refinement, and GWR calculation (Fig.  2). 
For image registration, a nonlinear algorithm from 
ANTsPy (Version 0.2.9) aligned the CT scan ( IMoving ) 
with the Eve template ( I ′Fixed ) [25, 26]. The objective 
was to overlay M′

Fixed onto the registered CT ( I ′Warped ) 

(1)GWR_b =
CN + PU

CC+ PIC

(2)GWR_s =
PU

PIC

CC
CN
PU

PIC

(a) Manual

CC
CN
PU

PIC

(b) Automated

CC
Body

CC
Splenium

CC
Genu

CN PU

PIC

(c) Automated in 3D view
Fig. 1  Visualization of a manual segmentations, b automated segmentations, and c automated segmentations in 3D view. CC, corpus callosum; CN, 
caudate nuclei; PU, putamen; PIC, posterior limb of the internal capsule
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and subsequently derive all ROI segmentations. How-
ever, registration accuracy could be influenced by vari-
ous factors, potentially affecting the precision of ROI 
segmentations. Subsequently, K-means segmentation 
and ROI segmentation refinement were implemented 
to adjust the M′

Fixed . First, we extracted the brain from 
I ′Warped and then utilized K-means clustering to obtain 
the gray ( M′

GM ) and the white matter mask ( M′
WM ). 

Following that, techniques including filtering, closing, 
and opening were employed to refine M′

WM and M′
GM , 

resulting in the creation of the refined Eve ROIs mask 
( M′

Refined ). Finally, the eight ROIs (four on each side) 
were inversely transformed to MMoving , and GWR_b 
and GWR_s were computed according to Eqs. 1 and 2, 
respectively. Additional file  1 shows further details 
about the automated method. Compared to the manual 
method, the automated approach generated a 3D vol-
ume for each ROI (Fig.  1b, c). Conversely, the manual 
method produced a 2D circular region for each ROI 
(Fig. 1a). Furthermore, Fig. 1b, c delineates the CC into 
its genu, body, and splenium parts; however, for GWR 
calculation, all three parts were combined as the entire 
CC. The automated method offered an advantage in 
that GWR was calculated using a fixed algorithm, 
reducing subjectivity among various physicians and 
ensuring reproducibility. Additionally, the GWR 
derived from 3D ROI segmentations includes a greater 

number of voxels, thus providing a more comprehen-
sive characterization of the ROI.

Excluded CTs management
The symmetry of brain hemispheres could be influenced 
by head malpositioning during CT examination or pre-
existing localized brain lesions. However, symmetry loss 
in the automated GWR calculation indicated a lack of 
symmetry on the brain CT images, potentially leading 
to GWR miscalculation. If physicians identified a loss 
of symmetry during the initial evaluation, the case was 
excluded and defined as a manually excluded CT. The 
remaining cases were included in the automated calcula-
tion. The reasons for manual exclusion included loss of 
symmetry (N = 2), structural change (including intrac-
ranial hemorrhage or brain tumor, N = 11), severe brain 
atrophy resulting in symmetry loss (N = 4), and marked 
signal interference or incomplete imaging (N = 5). Fig-
ure 3 shows representative examples. After manual exclu-
sion, CTs were further excluded during the automated 
process by identifying low registration accuracy and any 
missing ROI segmentations. Subsequently, the automated 
method was employed for the remaining cases follow-
ing manual exclusion. However, improper head orienta-
tion may cause poor registration with the Eve template, 
resulting in incorrect segmentation and GWR evaluation 
(N = 12). Moreover, due to the proximity of the CC and 

Image
Registration

K-means
Segmentation

Segmentation
Refinement

GWR
Calculation

Results

Fig. 2  Workflow of the automated method
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CN to the ventricle, the automated segmentation method 
may not capture them accurately. In such cases, the CC 
or CN might be missing, rendering the evaluation of the 
GWR impossible (N = 5).

Statistical analysis
Continuous variables, presented as the mean with 
standard deviation, were compared using Student’s t 
test, while categorical variables expressed as median 
with the interquartile range were compared employ-
ing the Chi-square test. Pearson’s correlation coefficient 
(PCC) was utilized to evaluate the correlation between 
manual and automated calculations of intensities 
across different brain gray and white matter regions. 
Receiver operating characteristic (ROC) curves were 
constructed for manual and automated GWR. The 
performance of different GWR calculation methods 
was compared by evaluating the difference in the area 
under the curve (AUCs) of the ROC curves for each 
method. Variables with a significance level of p < 0.1 
were included in the multiple logistic regression model. 
Multiple logistic regression analyses were performed 
to identify independent variables associated with 

predicting favorable neurological outcomes. A p < 0.05 
was considered significant. Statistical analyses were 
performed using R software 4.2.0.

Results
Patient enrollment and outcomes
Based on the Integrated Medical Database of National 
Taiwan University Hospital (NTUH-iMD), 544 adult 
patients underwent successful resuscitation after experi-
encing non-traumatic OHCA in the emergency depart-
ment (Fig.  4). Patients with CPC > 2 before cardiac 
arrest were excluded (N = 57). Additionally, transferred 
patients were excluded from the analysis due to unknown 
outcomes (N = 5). After excluding CTs using the manual 
(N = 22) and automated approaches (N = 17) as previ-
ously described, 443 patients with brain CT scans were 
eligible for further analysis. The dataset was divided into 
the derivation (60%) and validation (40%) sets based on 
the age and sex of the patients. In the derivation set, 188 
(31 survived and 157 deaths) were in the poor neurologi-
cal outcome group. In the validation set, 128 (25 survived 
and 103 died) were in the poor neurological outcome 
group.

(a) Loss of symmetry (b) Structure change (c) Signal interference (d) Chronic large brain
lesion with atrophy

(e) Loss of CC (f) Loss of CN (g) Loss of CC and CN (h) Incorrect segmenta-
tion

Fig. 3  Representative examples of manually (upper row) and automatically (lower row) excluded CTs. In the upper row, manual exclusion criteria 
were applied, including a loss of symmetry, b structural change (e.g., intracranial hemorrhage), c severe signal interference, and d chronic large 
brain lesion with atrophy. In the lower row, automated exclusion of CTs resulted from inaccurate registration, leading to e loss of CC segmentation, 
f loss of CN segmentation, g loss of both CC and CN segmentations, and h incorrect segmentation. The regions enclosed by dotted lines indicate 
missing ROI segmentations. CC, corpus callosum; CN, caudate nucleus
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Baseline characteristics and resuscitation variables 
of patients
Among the patient characteristics of the entire data-
set, lower age was related to survival ( 59.2± 15.7 years 
vs. 66.7± 15.4 years, p < 0.001 ) and favorable neu-
rological outcome ( 58.0± 15.9 years vs. 65.8± 15.5 
years, p < 0.001 ). Additionally, a history of malignancy 

correlated with in-hospital mortality ( 4.9% vs. 15.0% , 
p = 0.001 ) and poor neurological outcome ( 4.7% vs. 
13.3% , p = 0.014 ). Survival and favorable neurologi-
cal outcomes were associated with witnessed collapse, 
low epinephrine dose, short CPR duration, and higher 
systolic and diastolic blood pressure Table 1; Additional 
file 3: Table 1S.

Fig. 4  Patient flow chart
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Manual and automated measurement of the GWR of brain 
CT scans
In the derivation and validation sets, we observed signifi-
cantly higher GWR values in the favorable neurological 
outcome group, whether computed manually or auto-
matically (Table  1). This significant difference persisted 
within the survival-to-hospital discharge group (Addi-
tional file 3: Table 1S). To ensure that the HU values of 
ROI segmentations obtained through the automated 
method represented the gray and white matter accurately, 

we evaluated the correlation between the manual and 
automated methods for four ROI segmentations. Overall, 
a strong correlation was observed (Fig. 5).

Subsequently, to assess whether the predictive power 
of the basal GWR (GWR_b) and simplified GWR 
(GWR_s) calculated via the automated method was 
comparable to that of the manual method, we defined 
the GWR_b calculated through the manual method 
as Manual_b and the GWR_s as Manual_s. Similarly, 
the GWR_b calculated via the automated method 

Table 1  Baseline characteristics and resuscitation variables of OHCA patients according to neurological outcome

Values are expressed as mean (standard deviation) or n (%) as appropriate

CAD coronary artery disease, CVA cerebral vascular accident, HTN hypertension, ESRD end-stage renal disease, DM diabetes mellitus, COPD/Asthma chronic obstructive 
pulmonary disease/asthma, DBP diastolic blood pressure, SBP systolic blood pressure, PCI percutaneous coronary intervention, ECMO extracorporeal membrane 
oxygenation, TTM targeted temperature management

Neurological outcome

Derivation (N = 265) Validation (N = 178) Total (N = 443)

Good
(N = 77)

Poor
(N = 188)

P value Good
(N = 50)

Poor
(N = 128)

P value Good
(N = 127)

Poor
(N = 316)

P value

Age (years) 58.0 (15.5) 66.0 (15.2) < 0.001 58.0 (16.8) 65.6 (16.0) 0.007 58.0 (15.9) 65.8 (15.5) < 0.001

Male 59 (76.6) 127 (67.6) 0.188 38 (76.0) 87 (68.0) 0.384 97 (76.4) 214 (67.7) 0.092

CAD 7 (9.1) 14 (7.4) 0.842 5 (10.0) 11 (8.6) 0.997 12 (9.4) 25 (7.9) 0.735

CVA 2 (2.6) 7 (3.7) 0.932 0 (0) 10 (7.8) 0.094 2 (1.6) 17 (5.4) 0.127

HTN 15 (19.5) 54 (28.7) 0.161 9 (18.0) 31 (24.2) 0.488 24 (18.9) 85 (26.9) 0.100

ESRD 4 (5.2) 17 (9.0) 0.422 4 (8.0) 13 (10.2) 0.876 8 (6.3) 30 (9.5) 0.369

DM 11 (14.3) 36 (19.1) 0.445 5 (10.0) 21 (16.4) 0.395 16 (12.6) 57 (18.0) 0.210

COPD/asthma 1 (1.3) 9 (4.8) 0.318 0 (0.0) 4 (3.1) 0.483 1 (0.8) 13 (4.1) 0.131

Heart failure 2 (2.6) 8 (4.3) 0.773 2 (4.0) 4 (3.1) 1.000 4 (3.1) 12 (3.8) 0.961

Malignancy 2 (2.6) 26 (13.8) 0.013 4 (8.0) 16 (12.5) 0.555 6 (4.7) 42 (13.3) 0.014

Resuscitation variables

Prehospital CPR 65 (84.4) 153 (81.4) 0.682 39 (78.0) 110 (85.9) 0.288 104 (81.9) 263 (83.2) 0.843

Witnessed collapse 65 (84.4) 133 (70.7) 0.030 46 (90.0) 97 (75.8) 0.055 110 (86.6) 230 (72.8) 0.003

Epinephrine (mg) 1.7 (2.3) 4.9 (4.4) < 0.001 2.7 (3.9) 4.4 (3.8) 0.012 2.1 (3.1) 4.7 (4.2) < 0.001

CPR duration (min) 20.0 (11.1) 23.9 (11.1) 0.009 18.0 (11.4) 23.1 (10.0) 0.008 19.2 (11.2) 23.6 (10.6) < 0.001

DBP (mmHg) 86.1 (29.8) 66.6 (24.9) < 0.001 80.4 (22.9) 65.5 (22.4) < 0.001 83.9 (27.3) 66.1 (23.9) < 0.001

SBP (mmHg) 137.6 (47.4) 113.0 (41.0) < 0.001 137.0 (41.0) 114.9 (39.4) 0.002 137.4 (44.8) 113.8 (40.3) < 0.001

Heart rate (/min) 100.1 (28.8) 102.4 (30.7) 0.549 103.5 (26.7) 101.2 (32.5) 0.625 101.4 (27.9) 101.9 (31.4) 0.865

pH 7.17 (0.15) 7.06 (0.16) < 0.001 7.18 (0.14) 7.07 (0.16) < 0.001 7.17 (0.15) 7.07 (0.16) < 0.001

Lactic acid (mmole/L) 9.0 (4.4) 10.6 (3.6) 0.006 8.8 (4.1) 11.3 (4.8) 0.001 8.9 (4.3) 10.9 (4.1) < 0.001

Troponin (ng/L) 4.8 (10.9) 17.2 (77.5) 0.034 15.2 (35.6) 20.3 (86.1) 0.573 8.9 (24.3) 18.5 (81.0) 0.058

Brain CT image analysis

CT timing (min) 106.2 (110.0) 101.1 (50.2) 0.699 85.2 (51.3) 108.3 (93.6) 0.038 97.9 (91.8) 104.0 (71.0) 0.502

Manual_b 1.25 (0.08) 1.19 (0.10) < 0.001 1.26 (0.09) 1.20 (0.10) < 0.001 1.25 (0.08) 1.19 (0.10) < 0.001

Manual_s 1.28 (0.08) 1.20 (0.11) < 0.001 1.28 (0.09) 1.21 (0.10) < 0.001 1.28 (0.08) 1.21 (0.11) < 0.001

Automated_b 1.24 (0.04) 1.18 (0.08) < 0.001 1.24 (0.04) 1.19 (0.08) < 0.001 1.24 (0.04) 1.19 (0.08) < 0.001

Automated_s 1.23 (0.04) 1.17 (0.07) < 0.001 1.23 (0.04) 1.17 (0.07) < 0.001 1.23 (0.04) 1.17 (0.07) < 0.001

Post-cardiac arrest management

PCI 60 (77.9) 49 (26.1) < 0.001 33 (66.0) 39 (30.5) < 0.001 93 (73.2) 88 (27.8) < 0.001

ECMO 15 (19.5) 48 (25.5) 0.373 17 (34.0) 29 (22.7) 0.173 32 (25.2) 77 (24.4) 0.951

TTM 41 (53.2) 82 (43.6) 0.197 18 (36.0) 55 (43.0) 0.497 59 (46.5) 137 (43.4) 0.625
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was defined as Automated_b, and the GWR_s as 
Automated_s. Figure 6a illustrates the utilization of the 
GWR in predicting favorable neurological outcomes. 
Automated_s exhibited the highest AUC values (0.79 
and 0.78 in the derivation and validation sets, respec-
tively). The GWR_b and GWR_s showed higher AUCs 
when calculated through the automated method com-
pared to the manual method. Furthermore, DeLong’s 
test revealed that Automated_s significantly outper-
formed Manual_b, Manual_s, and Automated_b with p 
values of 0.001, 0.002, and < 0.001 , respectively (Addi-
tional file 3: Table 4S). Table 2 presents the binary clas-
sification performance achieved by applying a cutoff 
value determined based on the Youden index of the 
ROC curve in the derivation set. Notably, Automated_s 
exhibited the highest AUC, sensitivity, specificity, posi-
tive predictive value (PPV), and negative predictive 
value (NPV) in the derivation and validation sets. Addi-
tional file  2: Fig.  2S shows the scatter plots of manual 
and automated GWRs versus outcomes.

GWR as an independent predictor of outcomes
Clinical and resuscitation variables were integrated to 
evaluate whether the GWR functions serve as an inde-
pendent factor for favorable neurological outcomes in 
the early post-cardiac arrest period. Building on previ-
ous findings, we established that the simplified GWR 
might offer superior predictive performance than that of 
the basal GWR. Multiple logistic regression models were 
developed with binarized Manual_s and Automated_s 
using the cutoff values from Table  2. Both Manual_s 
and Automated_s emerged as independent factors for 
predicting neurological outcomes (Table  3). Addition-
ally, as demonstrated in Fig.  6b, the models incorporat-
ing Manual_b, Manual_s, Automated_b, or Automated_s 
exhibited higher AUCs than those only clinical vari-
ables without the GWR. Moreover, in the total dataset, 
Manual_s and Automated_s exhibited higher AUCs 
than Manual_b and Automated_b, respectively, indi-
cating the superior predictive power of the simplified 
GWR. Further outcomes related to survival to discharge 

(a) Derivation set

(b) Validation set
Fig. 5  Correlation of HU density between the manual and automated methods in the CN, CC, PU, and PIC in the a derivation set and b validation 
set. CC, corpus callosum; CN, caudate nuclei; PU, putamen; PIC, posterior limb of the internal capsule
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(a) ROC curve of gray-to-white matter ratio

(b) ROC curve of logistic regression models
Fig. 6  ROC curves and AUCs for predicting favorable neurological outcomes in the a GWR and b logistic regression models

Table 2  Comparison of the performance between the manual method and the automated method in the derivation and validation 
sets

Values in bold demonstrates the best performance of the corresponding metrics in the derivation and validation sets

C.I. confidence interval, PPV positive predictive value, NPV negative predictive value

AUC (95% C.I.) Sensitivity (95% C.I.) Specificity (95% C.I.) PPV (95% C.I.) NPV (95% C.I.) Cutoff value

Derivation

Manual_b 0.71 (0.64–0.78) 0.75 (0.65–0.85) 0.64 (0.57–0.71) 0.46 (0.37–0.55) 0.86 (0.81–0.92) 1.217

Manual_s 0.72 (0.65–0.78) 0.66 (0.55–0.77) 0.71 (0.64–0.77) 0.48 (0.39–0.58) 0.84 (0.78–0.89) 1.252

Automated_b 0.75 (0.69–0.81) 0.74 (0.64–0.83) 0.65 (0.58–0.72) 0.47 (0.38–0.56) 0.86 (0.80–0.91) 1.217

Automated_s 0.79 (0.74–0.85) 0.81 (0.71–0.89) 0.70 (0.63–0.76) 0.52 (0.43–0.61) 0.90 (0.85–0.94) 1.204

Validation

Manual_b 0.67 (0.58–0.76) 0.66 (0.52–0.79) 0.54 (0.45–0.62) 0.36 (0.26–0.46) 0.80 (0.71–0.88) 1.217

Manual_s 0.68 (0.60–0.77) 0.62 (0.49–0.75) 0.65 (0.57–0.73) 0.41 (0.30–0.52) 0.81 (0.73–0.89) 1.252

Automated_b 0.71 (0.62–0.79) 0.60 (0.47–0.74) 0.59 (0.51–0.68) 0.37 (0.26–0.47) 0.79 (0.71–0.87) 1.217

Automated_s 0.78 (0.70–0.85) 0.78 (0.66–0.89) 0.67 (0.59–0.75) 0.48 (0.37–0.59) 0.89 (0.82–0.95) 1.204
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are presented in Additional file 2: Fig. 3S and Additional 
file 3: Tables 1S–5S. Additional file 3: Table 6S presents 
the sensitivities, specificities, PPVs, and NPVs for pre-
dicting neurological outcomes using manual and auto-
mated GWRs at various cutoff values. This table offers 
valuable information for future meta-analyses. Addi-
tional file 3: Tables 7S and 8S showed the AUCs perfor-
mance at different CT times by hours and median time 
respectively.

Discussion
The study showed a strong correlation between GWR 
values obtained through automated measurement and 
calculation and those derived via manual calculation 

using the non-contrast brain CT images of patients who 
had experienced cardiac arrest. The automated GWR 
exhibited significantly superior predictive power to that 
of the manually computed GWR. To predict outcomes 
during the early post-cardiac arrest period, the GWR 
emerged as an independent predictor in multiple logistic 
regression models that included clinical and resuscita-
tion variables. Including the GWR in the models led to 
a significantly higher AUC. The model incorporating the 
automated GWR achieved the highest AUC value.

Early assessment of prognosis in comatose cardiac 
arrest survivors remains challenging; however, it remains 
helpful and crucial for decision making regarding aggres-
sive interventions in post-cardiac arrest care  [6–11]. A 

Table 3  Multiple logistic regression for predicting favorable neurological outcomes with (a) the manual method and (b) the 
automated method

C.I. confidence interval, DBP diastolic blood pressure, SBP systolic blood pressure

Derivation Validation Total

Odds ratio 95% C.I. P value Odds ratio 95% C.I. P value Odds ratio 95% C.I. P value

(a) With the manual method

Manual_s > 1.252 4.13 1.90–8.97 < 0.001 3.11 1.33–7.22 0.009 3.27 1.94–5.53 < 0.001

Age 0.98 0.95–1.00 0.107 0.97 0.95–1.00 0.041 0.97 0.96–0.99 0.006

Male 1.43 0.62–3.28 0.398 1.52 0.54–4.31 0.429 1.23 0.68–2.25 0.496

HTN 0.80 0.32–1.97 0.621 1.57 0.52–4.76 0.426 1.03 0.53–1.98 0.940

Malignancy 0.15 0.02–0.86 0.033 1.20 0.29–4.98 0.802 0.38 0.14–1.07 0.068

Witnessed collapse 1.24 0.48–3.17 0.659 2.12 0.63–7.11 0.225 1.35 0.68–2.68 0.396

Epinephrine dose (mg) 0.60 0.48–0.75 < 0.001 0.86 0.74–1.01 0.064 0.73 0.64–0.82 < 0.001

CPR duration 1.00 0.97–1.04 0.984 0.95 0.91–0.99 0.023 0.98 0.96–1.01 0.197

DBP 1.04 1.01–1.06 0.005 1.02 0.99–1.06 0.209 1.02 1.01–1.04 0.007

SBP 0.99 0.97–1.00 0.139 1.01 0.99–1.03 0.556 1.00 0.98–1.01 0.410

pH value 14.05 0.77–256.51 0.074 11.51 0.47–283.27 0.135 6.60 0.88–49.64 0.067

Lactic acid 1.00 0.90–1.13 0.941 0.90 0.81–1.01 0.064 0.95 0.88–1.02 0.125

Troponin (ng/L) 0.96 0.93–0.99 0.009 1.00 0.99–1.00 0.502 0.99 0.98–1.00 0.069

ECMO 7.53 2.21–25.69 0.001 4.45 1.48–13.34 0.008 5.23 2.39–11.41 < 0.001

(b) With the automated method

Automated_s > 1.204 5.69 2.57–12.59 < 0.001 4.81 1.94–11.90 0.001 5.22 2.96–9.19 < 0.001

Age 0.99 0.96–1.01 0.298 0.97 0.95–1.00 0.062 0.98 0.96–1.00 0.035

Male 1.38 0.59–3.21 0.453 1.61 0.54–4.79 0.396 1.28 0.69–2.38 0.436

HTN 0.74 0.29–1.88 0.521 1.32 0.44–3.94 0.616 1.00 0.51–1.96 0.995

Malignancy 0.10 0.02–0.64 0.015 1.81 0.43–7.60 0.419 0.40 0.14–1.13 0.085

Witnessed collapse 1.67 0.64–4.36 0.294 2.40 0.67–8.63 0.179 1.58 0.78–3.23 0.206

Epinephrine dose (mg) 0.63 0.51–0.78 < 0.001 0.88 0.75–1.04 0.142 0.75 0.66–0.85 < 0.001

CPR duration 0.99 0.95–1.03 0.500 0.95 0.91–0.99 0.024 0.97 0.95–1.00 0.073

DBP 1.04 1.01–1.06 0.007 1.02 0.98–1.05 0.374 1.02 1.00–1.04 0.020

SBP 0.98 0.97–1.00 0.064 1.01 0.99–1.03 0.497 0.99 0.98–1.01 0.353

pH value 4.82 0.24–98.17 0.307 5.42 0.21–141.74 0.310 2.96 0.36–24.15 0.310

Lactic acid 0.96 0.85–1.08 0.470 0.91 0.82–1.01 0.081 0.93 0.87–1.00 0.062

Troponin (ng/L) 0.97 0.94–1.00 0.038 1.00 0.99–1.01 0.583 0.99 0.98–1.00 0.075

ECMO 5.12 1.50–17.47 0.009 3.46 1.09–10.96 0.035 3.98 1.78–8.90 < 0.001
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decreased GWR indicates hypoxic-ischemic encepha-
lopathy and correlates with poor neurological outcomes. 
However, in a previous study [27], only 12.2% of brain CT 
scans performed during emergency room stays showed 
abnormalities as visually diagnosed by a single radiolo-
gist. Automated GWR measurement provides essential 
information more conveniently and efficiently for post-
cardiac arrest care. The incorporation of automatically 
computed GWR enhanced the predictive power for neu-
rological outcomes during the early post-cardiac arrest 
period as shown in the study. In 2016, Hanning et al. [19] 
compared automated assessment using normalized prob-
abilistic maps to manual assessment in a small series 
involving 84 patients. Regarding outcome prediction, 
the automated GWR (AUC 0.86) demonstrated higher 
predictive power ( p = 0.021 ) than that of the manual 
GWR (AUC 0.70) with a moderate intra-class correlation 
coefficient (0.551). However, the clinical endpoint indi-
cating poor CPC following transfer to the general ward 
may be unreliable, owing to potential late improvement 
in the study. Conversely, in 2020, Hannawi et  al.  [20] 
proposed an automated GWR measurement with a seg-
mentation method based on the JHU-MNI-SS-SS atlas 
(Eve atlas)  [25]. The result showed no significant differ-
ence in prognostic performance when comparing models 
comprising clinical factors only (AUC 0.92) with those 
comprising clinical factors and the GWR (AUC 0.92). 
Hannawi et  al.  [20] registered the head CT to Eve atlas 
and then derived the segmentation. They also included a 
post-processing step that discarded voxels with an inten-
sity ≥ 100 or ≤ 15. Their approach appeared to rely heav-
ily on accurate image registration, employing a threshold 
of 15 for artifact and CSF pulsation removal. However, 
the segmentation was not adjusted to account for the 
boundaries between the gray and white matter. For 
instance, poor registration could result in a portion of the 
PU overlapping with the white matter. To mitigate poten-
tial errors arising from inaccurate image registration, we 
implemented K-means segmentation and segmentation 
refinement. However, since the ROIs in CT images were 
not uniform, the gray and white matter masks derived 
from the K-means algorithm were fragmented. Direct 
utilization of these fragmented masks to modify the Eve 
ROIs mask was not feasible, as the ROIs needed to be 
complete. Therefore, we used morphology techniques, 
specifically closing to fill holes within the ROIs and 
opening to eliminate noise around the ROIs. This pro-
cess enhanced the accuracy of measuring the CC, CN, 
PU, and PIC. Additionally, we enrolled a larger number 
of patients in our study compared to those enrolled in 
previous automated quantitative GWR studies (Hanning 
et al. [19]; Hannawi et al. [20]). In our study, a significant 
correlation was observed between automated and manual 

GWRs. Additionally, we employed the automated model 
to measure the 3D volume rather than a small 2D circu-
lar area in the manual method. This approach helped in 
alleviating the variance of HU values within each ROI by 
averaging a larger number of voxels. In clinical scenarios 
where manual measurement of the GWR is performed, 
different physicians with varying levels of experience may 
select different locations for each ROI, potentially intro-
ducing bias to GWR measurements. This variance could 
account for the lower optimal cutoff value derived by 
the Youden index for the automated method (1.204 for 
Automated_s) compared to that of the manual method 
(1.252 for Manual_s) observed in our study. Although 
the cutoff values may vary between studies, a value of 
approximately 1.3 has been suggested as normal, as per 
the resuscitation guidelines [28]. The cutoff proposed in 
these guidelines [29, 30] is primarily derived from man-
ual measurement. Similarly, a lower optimal cutoff value 
of 1.084 was previously identified using an automated 
quantitative method  [19]. In our study, the AUC values 
for predicting neurological outcomes were significantly 
higher when using the automated method than with the 
manual method. This improvement may be attributed to 
the automated method providing a more representative 
GWR. However, our method did not provide safe cutoffs 
for prediction of poor neurological outcome with high 
specificity on an individual patient basis.

Various studies have reported different AUC values 
for predicting neurological outcomes using automated 
GWR, with values of 0.86  [19], 0.73  [20], and 0.79  [21] 
for brain CT within 24  h after resuscitation. Hence, 
the timing of obtaining brain CT images may influence 
prognostic power. As hypoxic-ischemic encephalopathy 
progresses, the difference between the gray and white 
matter decreases during the post-cardiac arrest period. 
The AUCs of the GWR increased from 0.79 for images 
obtained within 24  h to 0.86 for those obtained after 
24 h [21]. GWR changes were more subtle in the earlier 
post-cardiac arrest period. In a study conducted by Han-
ning, the median time for obtaining CT images was 8.4 h, 
while it was 3 h in that conducted by Kenda. In our study, 
despite a shorter median time of 88 min after resuscita-
tion, the AUC was 0.79. Additionally, we observed an 
improvement in AUCs from 0.75 obtained within 88 min 
to 0.83 obtained after 88 min. Automated GWR measure-
ment for predicting neurological outcomes indicates that 
brain CT in the early post-cardiac arrest period can not 
only identify potential central nervous system etiologies 
of cardiac arrest but also provide early prognostic insight 
for post-cardiac arrest care.

Early prognostication is important in managing 
patients following cardiac arrest, aiding in decision 
making regarding invasive procedures and critical care 



Page 12 of 14Tsai et al. Critical Care          (2024) 28:118 

management during the period. Various scoring systems 
have been proposed for risk stratification; however, the 
GWR of non-contrast brain CT scans is seldom incor-
porated into multimodal prognostication. Non-contrast 
brain CT can be performed immediately after vital signs 
stabilize after ROSC before transferring patients to the 
intensive care unit or cardiac catheterization laboratory. 
The automated measurement of the GWR improves the 
likelihood of obtaining accurate GWR data after brain 
CT completion during the early post-cardiac arrest 
period, eliminating the need for manual measurement. 
Moreover, specifically incorporating the GWR can sig-
nificantly improve the predictive power for neurological 
outcomes when incorporating relevant clinical and resus-
citation variables, as revealed in our study. It has been 
recently suggested that early and delayed brain imaging 
after ROSC could yield superior predictive power  [31]. 
The automated measurement of the GWR in clinical 
practice could facilitate decision making during interven-
tion and warrants further investigation.

This study has some limitations. First, this was a ret-
rospective cohort study. Retrospective data collection 
might include some data loss. Second, inappropriate 
brain CT images were excluded from the analysis, defin-
ing them as cases where the symmetry of brain hemi-
spheres was influenced by head malpositioning during 
CT examination or prior localized brain lesions, as pre-
viously described in the methods section. Cases with 
severe artifacts or brain disease may cause distortion in 
the brain structure, potentially leading to inaccuracies in 
atlas segmentation. Therefore, we excluded these images 
to ensure accurate sampling of the GWR in the appro-
priate brain regions. Third, we only considered brain CT 
scans within 12  h after ROSC for early prognostication 
during the post-cardiac arrest period. Our timing analy-
sis and previous studies indicate that prognostic accuracy 
would significantly improve for CTs obtained > 24 hours 
after CA. Fourth, the study was conducted at a single-
center, specifically a tertiary medical center. The brain 
CT acquisition system and quality of clinical patient 
care could vary across different hospitals. However, the 
automated model utilized for measuring the GWR in the 
study may be employed in other imaging systems. How-
ever, multicenter studies are needed to validate the find-
ings of this study. Fifth, we did not categorize patients 
who experienced mortality into groups of natural death 
and withdrawal life sustaining therapy. Although CT 
scans were not routinely conducted, they were avail-
able to treating physicians during the withdrawal of the 
life sustaining therapy process. The possibility of a self-
fulfilling prophecy cannot be excluded. Sixth, the ideal 
validation cohort should be derived from a prospective 
cohort study incorporating an adjudication process for 

neurological outcomes and the timing of CT scans. This 
limitation arises from its retrospective design. Hence, 
future studies with a prospective design could provide 
valuable insights. Finally, performing brain CT scans 
may introduce bias in retrospective cohort studies. The 
acquisition of brain CT images was conducted in adher-
ence to the post-cardiac arrest care protocol of the medi-
cal center during the study period. While the possibility 
of not performing brain CT scans after vital signs stabi-
lized was low, it remains a possibility. Hence, future stud-
ies employing a prospective design could provide further 
clarity on these issues.

Conclusions
Automated measurement with non-contrast brain CT 
images provides valuable insights into the early post-car-
diac arrest period. In this study, we developed an auto-
mated method incorporating image registration, K-means 
segmentation, segmentation refinement, and GWR cal-
culation to determine the GWR. The findings revealed a 
robust correlation between automated and manual meas-
urements. Furthermore, incorporating the automatically 
computed GWR can significantly enhance the prediction 
of favorable neurological outcomes, enabling physicians 
to gain a comprehensive understanding of the condition 
of patients for strategic and effective decision making.
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