
Introduction

By defi nition, ‘suspended animation’ is a hypometabolic 

state characterized by the “the slowing of life processes 

by external means without termination” [1]. Various 

mammalian species are capable of nearly completely 

shutting down their vital functions in order to survive 

otherwise lethal environmental conditions, such as 

prolonged impairment of O
2
 supply and/or extreme 

temperatures. First described and studied in patients as 

“hibernation artifi cielle” induced by the so-called 

“cocktail lytique” during the Indochina war in the early 

1950 s, for obvious reasons the concept of inducing such 

a hypometabolic condition has attracted special interest 

in intensive care and emergency medicine. Originally, 

organ-protection, in particular for the central nervous 

system (CNS), was demonstrated when suspended ani-

ma tion was induced by rapidly cooling experimental 

animals to core body temperatures of about 10–15  °C 

using ice-cold infusions and/or cardiopulmonary bypass 

(CPB). Given the potential undesired adverse eff ects of 

hypothermia per se, e.  g., metabolic acidosis, coagulo-

pathy, prolonged infl ammation, and impaired host defense, 

any pharmacological measure allowing for a therapeutic 

on-demand induction of suspended animation would be 

of particular interest. Moreover, more recently, it was 

suggested that the reduced visceral organ function 

present in critically ill patients and/or after overwhelming 

hyperinfl ammation could be referred to as an adaptive 

mechanism to maintain ATP-homeostasis due to reduced 

energy expenditure rather than to irreversible organ 

failure [2]. A landmark paper by Blackstone et al. 

produced much excitement among researchers in the 

fi eld of shock and critical illness: Th ese authors 

demonstrated that mice inhaling hydrogen sulfi de (H
2
S) 

reversibly decreased their energy expenditure, which was 

associated with a fall in core temperature [3]. In the 

meantime, numerous pre-clinical studies have been 

published on the possible organ-protective eff ects of H
2
S, 

the available data being equivocal depending on the 

model used and the type of shock investigated. In this 

context in particular, the impact of H
2
S eff ects on energy 

metabolism remains a matter of debate. Th erefore, the 

present chapter reviews the available data on H
2
S-

induced on-demand hypometabolism, and its relation 

(directly as well as via a possible consecutive drop in 

body temperature) to organ-protective properties of H
2
S.

Rodent models

In their above-mentioned murine study, Blackstone et al. 

demonstrated, in awake, spontaneously breathing 

animals, that exposure to incremental, sub-toxic gaseous 

H
2
S concentrations (20–80  ppm) dose-dependently 

decreased energy expenditure within a few minutes as 

assessed by calorimetric measurement of whole-body O
2

uptake and CO
2 
production. Th is fall in metabolic activity 

was associated with bradypnea and consecutive 

hypothermia, with core temperature falling to levels close 

to ambient values [3]. After washout of H
2
S, all these 

metabolic and cardiopulmonary eff ects were completely 

reversible, and animals showed no apparent sequelae. 

Subsequently, Volpato et al. reported that the reduced 

metabolic activity went along with bradycardia and, 

consequently, reduced cardiac output, whereas blood 

pressure and stroke volume remained unaff ected [4]. 

Maintaining normothermia by external warming attenu-

ated the metabolic depressor eff ect, but did not com-

pletely blunt the cardiovascular response [4]. Various 

other rodent models confi rmed these observations: 

Inhaling gaseous H
2
S [5]–[12] and infusing the soluble 

sulfi de salts, NaSH or Na
2
S [6], [13], [14], also induced a 

reversible reduction in energy expenditure with a 
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subsequent fall in core temperature. Under stress 

conditions resulting from injurious mechanical ventila-

tion [8], [13], ischemia/reperfusion [7], [9], [12], endo-

toxin challenge [11], or bacterial sepsis [14], this eff ect 

coincided with attenuation of lung [8], [12]–[14], liver 

[9], kidney [7] and heart [12] injury. Most importantly, 

survival was improved after otherwise lethal stress states, 

e.  g., hemorrhagic shock [6] and exposure to hypoxic 

hypoxia (fraction of inspired O
2
 [FiO

2
] 5  %) [5]. In 

addition to anti-oxidant, anti-infl ammatory, and anti-

apoptotic properties, H
2
S was associated with better 

maintenance of mitochondrial integrity and function [7], 

[15], [16]: Treatment with either gaseous H
2
S treatment 

or injection of Na
2
S prevented mitochondrial swelling, 

loss of crypts [7], [15], and, at least under hypothermic 

conditions, outer mitochondrial membrane rupture as 

documented by the lack of responsiveness of the mito-

chondrial respiratory chain to stimulation with exo-

genous cytochrome c [16].

It should be noted that most of the above-mentioned 

murine data originate from experiments in awake, 

spontaneously breathing animals. Consequently, the role 

of anesthesia for a putative H
2
S-induced suspended 

animation remains unclear. Currently, scarce literature is 

available comparing the eff ects of anesthesia and H
2
S per 

se. In spontaneously breathing mice, Li et al. demon-

strated that H
2
S (80 and 250  ppm) produced the same 

metabolic depression as 0.3 and 0.9  % of isofl urane, 

respectively, however, without any anesthesia-related 

muscle atonia. Strikingly, when combining these two inter-

ventions, H
2
S even antagonized the isofl urane-induced 

metabolic depression [17]. Finally, in mecha nically venti-

lated mice under continuous intravenous (i.v.) anesthesia, 

the metabolic depressor eff ect of H
2
S was completely 

blunted when normothermia was main tained [16].

Large animal species and humans

Any metabolic depressant property of H
2
S seems to be 

dependent on the animal size: In rats the H
2
S-induced 

decrease in O
2
 uptake was several-fold lower than in mice 

[18]. In larger species (swine, sheep), various authors 

failed to confi rm any H
2
S-related reduction in metabolic 

activity at all, regardless of whether inhalation of gaseous 

H
2
S or injection of sulfi de salts were studied [19]–[22]. 

Moreover, in sheep, Derwall et al. [23] demonstrated that 

during administration of gaseous H
2
S via an extra-

corporeal, veno-arterial membrane oxygenator to avoid 

any airway mucosa damage related to the gas inhalation 

[24], [25], whole body O
2
 uptake, CO

2
 production, and 

cardiac output remained within the physiological range. 

At the highest doses administered (300 ppm), H
2
S did not 

aff ect calorimetric energy expenditure either, but caused 

pulmonary vasoconstriction associated with arterial 

hypotension and metabolic acidosis [23]. Finally, in 

human volunteers, inhalation of 10  ppm H
2
S during 

exercise decreased O
2
 uptake, and this eff ect was referred 

to a toxic reduction in maximal aerobic capacity rather 

than to a regulatory eff ect on mitochondrial respiration, 

as evidenced by a tendency for muscle lactate to increase 

and citrate synthase activity to decrease [26]. Conse-

quently, it was questioned whether any therapeutic 

potential of the H
2
S-induced “suspended animation”-like 

hypometabolism observed in mice and rats could be 

transferred to the clinical setting [27], [28]. On the other 

hand, when external measures to prevent hypothermia 

were withheld, Na
2
S-related organ-protection after 

kidney ischemia/reperfusion-injury [29] or hemorrhage 

and resuscitation [30] coincided with a progressive 

decrease in core temperature (Figure 1). Moreover, in the 

latter experiments, immediate post-mortem liver tissue 

mitochondrial activity showed a tendency towards both 

reduced oxidative phosphorylation and maximal O
2
 

uptake in the uncoupled state, and, in particular, a 

signifi cantly decreased “leak respiration”, i.  e., the 

respiratory activity necessary to compensate for the 

proton leakage, slipping, and cation-exchange along the 

inner mitochondrial membrane (Figure  2). In other 

words, H
2
S supplementation under these conditions 

provided protective reduction rather than toxic inhibition 

of cellular respiration.

How can these diverging fi ndings be reconciled? Under 

stress conditions, e.  g., in response to hypoxia or circu-

latory shock, small rodents can reduce their energy 

expenditure as a result of decreased ‘non-shivering 

thermogenesis’ [31], due to modulation of the uncoupling 

protein-1, mostly in the brown adipose tissue [32]. In 

these species, non-shivering thermogenesis represents a 

large proportion of total O
2
 uptake, which can be rapidly 

decreased without aff ecting ATP formation [31]. Th is 

response is independent of any pharmacological inter-

vention, and represents a unique protective adaptation 

present in numerous mammals [31] and even in humans, 

e.  g., in neonates and during cold acclimatization [32]. 

However, due to the high area/volume ratio and, 

consequently, the higher heat dissipation, it is inversely 

related to body size [31], i.  e., to the ratio of O
2
 

consumption and body weight. Two phenomena support 

this latter notion: i)  No matter the species, newborns 

present with more pronounced hypoxia-induced hypo-

meta bolism than do adults [31]; ii) when the ratio of O
2
 

consumption and body weight per se is low (e.  g., in 

adults of larger species), normoxic O
2
 uptake (e.  g., 

during exercise [31]) may be associated with hypoxia-

induced hypometabolism. Hence, if possible at all, 

achieving a suspended animation-like status in larger 

animals and humans will be more diffi  cult and require 

much more time because of the small surface area/mass 

ratio: In fact, in anesthetized and mechanically ventilated 
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swine, after four hours of Na
2
S infusion whole body O

2
 

uptake and CO
2
 production started to decrease, subse-

quently resulting in a moderate decrease in core tempera-

ture at ten hours of drug infusion [23] (Fig. 1).

No matter the current debate on the feasibility of 

pharmacological induction of whole body suspended 

animation in larger animals, inducing hypometabolism to 

hibernate isolated organs and, thereby, prolong their 

tolerance against tissue ischemia or hypoxia remains an 

attractive option, in particular for organ transplantation. 

Numerous studies in rodents have demonstrated that H
2
S 

administration improved kidney, liver heart, and lung 

function and attenuated histological damage after 

orthotopic organ transplant. Th is benefi cial eff ect of H
2
S 

administration (NaSH 0.5 mmol/l over 10 minutes before 

and immediately after initiation of reperfusion) was 

confi rmed in isolated porcine kidneys ex vivo undergoing 

normothermic reperfusion with autologous blood after 

25 minutes of warm ischemia and subsequently 18 hours 

of storage at 4 °C [33].

Figure 1. Time course of body core temperature in swine undergoing (a) 90 minutes intra-aortic balloon occlusion-induced kidney 

ischemia/reperfusion-injury (data are adapted from [29]: Dark blue squares, vehicle n = 10; blue circles, Na
2
S n = 9; all data are mean ± SD, 

§ designates p < 0.05 between groups); (b) hemorrhage and resuscitation (data are adapted from [30]: black squares, vehicle n = 14; dark 
blue squares, Na

2
S started two hours before hemorrhage, n = 10; light blue squares, Na

2
S started simultaneously with hemorrhage, n = 11; 

blue triangles, Na
2
S started immediately after hemorrhage, n = 10; all data are mean ± SD, § designates p < 0.05 ‘simultaneous’ treatment 

vs. vehicle). Note that in both experimental series at least four hours of drug infusion were necessary to achieve a signifi cant decrease in body 

temperature.
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Hypothermia

Equivocal data are available whether hypothermia, 

caused by a possible H
2
S-related fall in energy expendi-

ture and/or due to external cooling measures, assumes 

importance for organ protection achieved during H
2
S 

administration. Inhaling H
2
S prior to myocardial ische-

mia at concentrations that had no metabolic depressant 

eff ect (10 ppm) attenuated organ damage, but to a lesser 

degree than concentrations that reduced energy 

expenditure (100  ppm) [12], suggesting that hypo-

metabolism may indeed enhance the organ-protective 

properties of H
2
S. Of note, in that study as well as in 

others demonstrating H
2
S-related organ production 

coinciding with reduced metabolic activity, hypothermia 

was prevented [5], [7], [9], [14],[15] in order to elucidate 

the impact of a simultaneous drop in core temperature. 

Moreover, organ protection and improved survival were 

also shown to be in part [12], [13], [15], [34], [35] or even 

completely [8], [11], [36], [37] independent of any H
2
S-

induced metabolic depression at all. Finally, data obtained 

in large animal (swine or sheep) models of shock 

resulting from ischemia/reperfusion [29], [38]–[42], 

hemorrhage and resuscitation [30], or burn injury [36] 

also suggested that the benefi cial eff ects of infusing Na
2
S 

were at least in part independent of metabolic depression 

and/or a fall in core temperature. Hence, any moderate 

hypothermia observed simultaneously with H
2
S-induced 

organ-protection may also be due to attenuation of 

systemic infl ammation rather than to reduced energy 

expenditure per se. In other words, such fi ndings raise a 

‘chicken and egg’ problem, which can be attributed to the 

so-called Q10 eff ect, i. e., the two to three fold reduction 

in all chemical reactions and thus metabolism associated 

with a 10  °C-reduction of body temperature [31]: As an 

example, during otherwise lethal porcine hemorrhage, 

therapeutic hypothermia was associated with reduced 

concentrations of pro-infl ammatory cytokines [43]. Th e 

potential of H
2
S acting as a metabolic depressant in larger 

species independent of any anti-infl ammatory and anti-

oxidant property still remains unsettled: In the above-

mentioned swine study showing an H
2
S-induced drop in 

O
2
 uptake and CO

2
 production as well as a consecutive 

moderate fall in core temperature, animals underwent a 

short period of aortic occlusion, which did not cause any 

increase in the blood levels of pro-infl ammatory 

cytokines or markers of oxidative and nitrosative stress 

[23].

Irrespective of the question as to whether or not there 

is cause-eff ect relationship between H
2
S-related organ 

protection and coinciding hypometabolism and/or 

hypothermia, hypothermia does assume importance for 

H
2
S-induced eff ects on substrate utilization and 

mitochondrial function. It is well-established that H
2
S 

toxicity is due to inhibition of mitochondrial respiration 

resulting from blockade of the complex IV of the 

respiratory chain, i. e., cytochrome c oxidase [44]. When 

compared to normothermia, hypothermia (27  °C) 

increased the Na
2
S concentrations necessary to induce 

inhibition of mitochondrial respiratory activity (from 

< 1 μM to 2–4 μM), and nearly doubled the Na
2
S con cen-

trations required for a 50  % reduction in mitochondrial 

respiratory activity [16], [45]. Hypothermia may also 

infl uence the eff ect of H
2
S on substrate utilization and, 

thereby, may even improve the yield of the mitochondrial 

respiration: In anesthetized and ventilated mice, during 

normothermia, inhaling 100  ppm H
2
S did not aff ect 

endogenous glucose production (as calculated from the 

rate of appearance of 1,2,3,4,5,6-13C
6
-glucose during con-

tinuous i.v. isotope infusion), whole body CO
2
 

production, or direct, aerobic glucose oxidation rate (as 

derived from VCO
2
 and the expiratory 13CO

2
/12CO

2
 ratio) 

(Fig. 3). However, under hypothermic (core temperature 

27  °C) conditions, the rate of direct, aerobic glucose 

oxidation increased, suggesting a shift toward preferential 

carbohydrate utilization [16] (Fig.  3). Such a switch in 

fuel utilization is associated with an improved yield of 

oxidative phosphorylation: Th e ATP synthesis/O
2
 con-

sump tion ratio is higher for glycolysis than for β-

oxidation, because nicotinamide adenine dinucleotide 

(NADH) as an electron donor provides three coupling 

Figure 2. Leak respiration (Le ak), i. e., O
2
 consumption necessary 

to compensate for the proton leakage, slipping, and cation-

exchange along the inner mitochondrial membrane; maximal 

oxidative phosphorylation (OxPhos); and maximal O
2
 uptake 

in the uncoupled state (ETS) in immediate post-mortem liver 

biopsies of animals undergoing hemorrhage and resuscitation 

treated with vehicle and Na
2
S infusion started simultaneously 

with the initiation of blood withdrawal. For protocol details, see 

[30]. All data are mean ± SD of O
2
 uptake in pmol/s/mg tissue; dark 

blue columns: vehicle, n = 9; light blue columns: Na
2
S, n = 10.
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sites rather than just two from FADH
2
 [46]. During cecal 

ligation and puncture-induced septic shock, the meta-

bolic eff ects of inhaled H
2
S partially disappeared: Inhaled 

H
2
S aff ected neither the sepsis-induced metabolic 

acidosis [34] nor glucose utilization (Figure  3), nor the 

responsiveness to stimulation with exogenous cyto-

chrome c oxidase. Nevertheless, H
2
S did normalize the 

sepsis-related increase in “leak respiration” – which was 

less pronounced during hypothermia – thus allowing for 

better maintenance of mitochondrial function (Figure 4). 

It is unclear whether the lack of eff ect of H
2
S on the 

mitochondrial respiratory chain was due to the septic 

challenge per se and/or to the ongoing treatment: During 

sepsis, all mice needed continuous i.v. norepinephrine to 

achieve target hemodynamics characterized by a 

normotensive and hyperdynamic circulation. In turn, 

norepinephrine incubation was associated with impair-

ment of tissue mitochondrial respiration.

Timing and dose

No matter the importance of hypometabolism for the 

organ-protective properties of H
2
S administration per se, 

Figure 3. Whole body CO
2
 production ( VCO

2
) (a), glycemia (b), endogenous glucose production (c), and direct, aerobic whole body 

glucose oxidation (d) in anesthetized and mechanically ventilated, normo- (38 °C; gray columns) and hypothermic (27 °C; blue columns) 

mice undergoing sham surgery (light gray and light blue columns) or cecal ligation and puncture (CLP)-induced sepsis (dark gray and 

dark blue columns) during inhalation of vehicle (open columns) and 100 ppm H
2
S (hatched columns). Data for sham-surgery are adapted 

from [16]. All data are mean ± SD, n = 8–11 per group, # designates p < 0.05 vs. normothermia, § designates p < 0.05 CLP vs. sham, $ designates 

p < 0.05 H
2
S vs. vehicle.
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the questions of timing and – due to the potential toxic 

inhibition of mitochondrial respiration – dosing of H
2
S 

remain unsettled. Clearly, there are plenty of data 

available showing that inhalation of H
2
S gas and/or the 

injection of NaSH or Na
2
S can prevent organ damage 

when administered prior to or at least simultaneously 

with the initiation of shock. However, the very few 

studies comparing a pre- and post-treatment design in 

mice showed marked reduction [7] or even complete 

disappearance [37] of the protective potency. In swine 

undergoing long-term hemorrhage and resuscitation, the 

results were even more curious [47]: Primed-continuous 

Na
2
S administration (initial bolus of 0.2 mg/kg, followed 

by 1  mg/kg/h over 12  hours of resuscitation) improved 

survival when compared to vehicle (survival: 71  %), 

regardless of whether the Na
2
S infusion was started two 

hours before (pre-treatment: survival 100  %) or 

simultaneously with (survival 91  %) the initiation of 

blood withdrawal, or at the start of re-transfusion of shed 

blood (post-treatment: survival 90  %) [30]. However, a 

signifi cant decrease in core temperature (Fig.  1b) and 

organ protection were only present in the group of 

animals treated simultaneously with the initiation of 

hemorrhage. Apparently, both the cumulative H
2
S dose 

as well as the rate of its generation assume importance 

for the eff ects on metabolism and organ protection, in 

particular under low fl ow conditions and/or circulatory 

shock: In swine undergoing cardiac arrest, primed-

continuous Na
2
S (0.3  mg/kg followed by 0.3  mg/kg/h 

over two hours) injected one minute after the start of 

cardiopulmonary resuscitation (CPR) reduced blood 

pressure and cardiac output during early resuscitation 

[21]. Increasing the Na
2
S dose (1.0  mg/kg followed by 

1.0 mg/kg/h) was associated with impaired neurological 

recovery. Even injection of comparable total amounts 

may have markedly diff erent eff ects due to the diff erent 

rate of H
2
S generation: In vitro slow H

2
S release from the 

H
2
S donor GYY4137 exerted anti-infl ammatory and 

-apoptotic eff ects, whereas short-term, high peak free 

sulfi de levels resulting from incubation with NaSH 

induced the opposite response [48]. In vivo, this concept 

was confi rmed in swine undergoing myocardial ischemia/

reperfusion injury: A primed-continuous Na
2
S infusion 

was superior to bolus injection [39].

Conclusions

Th e concept of “buying time in suspended animation” 

[49] has been discussed in the literature for more than a 

century. Originally induced by rapid external body cool-

ing, any pharmacological measure allowing for a thera-

peutic, on demand induction of ‘suspended animation’ is 

of particular interest because of the undesired side eff ects 

of hypothermia per se. Th erefore, the landmark paper 

demonstrating that inhaling H
2
S could induce a 

reversible, suspended animation-like hypometabolism 

[3], produced much excitement among researchers in the 

fi eld of shock and critical illness. Numerous pre-clinical 

studies are currently available on H
2
S-related organ 

protection, but the eff ects on energy metabolism remain 

a matter of debate. In this context, the well-established 

toxic blockade of cytochrome c oxidase by H
2
S may 

assume particular importance. Most studies so far 

suggest that the benefi cial eff ects of H
2
S are at least in 

part independent of an H
2
S-induced metabolic depres-

sion and, in particular, any decrease in core temperature. 

However, other data suggest that H
2
S-related hypo-

metabolism may enhance the organ-protective proper-

ties. Th e mechanism behind H
2
S-induced hypometa-

bolism is still not fully understood, and, moreover, the 

feasibility of H
2
S-induced suspended animation in larger 

animals has been questioned. Clearly, if possible at all, 

achieving a suspended animation-like status in larger 

animals and humans will be more diffi  cult and require 

much more time because of the small surface area/mass 

ratio. Again the available data are equivocal, suggesting 

that at least hibernating isolated organs remains an 

option. Even in larger species, data on the eff ects of H
2
S 

on mitochondrial function and morphology suggest that 

its supplementation during circulatory shock provides 

Figure 4. Leak state O
2
 consumption , i. e., the re spiratory 

activity necessary to compensate for the proton leakage, 

slipping, and cation-exchange along the inner mitochondrial 

membrane, as a fraction of the maximal O
2
 consumption in the 

uncoupled state, obtained from liver tissue of anesthetized 

and mechanically ventilated, normo- (38 °C; gray columns) 

and hypothermic (27 °C; blue columns) mice undergoing sham 

surgery (light gray and light blue columns) or cecal ligation and 

puncture (CLP)-induced sepsis (dark gray and dark blue columns) 

during inhalation of vehicle (open columns) and 100 ppm H
2
S 

(hatched columns). Data for sham-surgery are adapted from [16]. All 

data are mean ± SD, $ designates p < 0.05 H
2
S vs. vehicle.
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protective reduction rather than toxic inhibition of 

cellular respiration. Finally, according to the currently 

available literature, neither inhalation of gaseous H
2
S nor 

injection of the soluble sulfi de salts, NaSH or Na
2
S, is 

likely to become part of clinical practice because of 

damage to the airway mucosa and possibly toxic peak 

sulfi de concentrations, respectively, but slow H
2
S-

releasing molecules may enable these limitations to be 

overcome. Hence, there is “nothing rotten about 

hydrogen sulfi de’s medical promise” [50], and H
2
S clearly 

remains a “hot molecule” [51] in the fi eld of research for a 

possible pharmacological induction of suspended 

animation-like hypometabolism.

List of abbreviations used

CLP: cecal ligation and puncture; CNS: central nervous system; CPB: 

cardiopulmonary bypass; CPR: cardiopulmonary resuscitation; NADH: 

nicotinamide adenine dinucleotide.
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