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Abstract
The pathogenesis of sepsis-induced multiple organ failure may
crucially depend on the development of mitochondrial dysfunction
and consequent cellular energetic failure. According to this hypo-
thesis, interventions aimed at preventing or reversing mitochondrial
damage may have major clinical relevance, although the timing of
such interventions will be critical to both ensuring benefit and
avoiding harm. Early correction of tissue hypoxia, strict control of
glycaemia, and modulation of oxidative and nitrosative stress may
afford protection during the initial, acute systemic inflammatory
response. The regulated induction of a hypometabolic state
resembling hibernation may protect the cells from dying once
energy failure has developed, allowing the possibility of functional
recovery. Repair of damaged organelles through stimulation of
mitochondrial biogenesis and reactivation of cellular metabolism
may accelerate resolution of the multiple organ failure syndrome.

Introduction
Sepsis is the systemic inflammatory response to infection and
represents a major cause of morbidity and mortality in patients
admitted to intensive care units (ICUs) [1]. However, despite
decades of research, the pathophysiology of sepsis remains
incompletely understood. A critical limitation of tissue oxygen
delivery due to macrocirculatory or microcirculatory failure may
play a role, especially in the early phase of the disease
process before resuscitation has been initiated. Nonetheless,
a growing body of evidence suggests that multiple organ
failure (MOF) may develop during sepsis mainly as a
consequence of impaired cellular oxygen utilization.
Supportive data in patients include the following findings: total
body oxygen consumption falls progressively with increasing
severity of sepsis [2]; skeletal muscle tissue oxygen tension is
abnormally high but normalizes during the recovery phase [3];
necrotic and apoptotic cell death is minimal, if it occurs at all,
in most dysfunctioning organs [4]; and organs with limited
regenerative capabilities, such as kidney, are usually able to

recover to such an extent that long-term support is usually not
needed [5]. Sepsis-induced MOF may thus be related to a
potentially reversible impairment in cellular function rather than
any permanent structural damage.

The mitochondrion is the powerhouse of the cell [6]. Cellular
energy production depends on three interconnected
pathways: glycolysis within the cytoplasm, the Krebs cycle
and the electron transport chain within the mitochondria
(Figure 1). Glycolysis is a sequence of reactions that degrade
glucose to pyruvate. In the presence of oxygen, pyruvate and
other fuel molecules such as fatty acids and amino acids
enter the mitochondria, where they are completely oxidized
within the Krebs cycle. The reduced nicotinamide (NADH)
and flavin (FADH2) adenine dinucleotides transfer electrons
to the respiratory enzyme complexes located in the inner
mitochondrial membrane (electron transport chain) for the
process of ATP generation by oxidative phosphorylation.
NADH donates electrons specifically to complex I whereas
FADH2 reduces complex II. The electrons then flow via
coenzyme Q (ubiquinone) to complex III, and are then
transported via cytochrome C to reach complex IV
(cytochrome oxidase). At this final stage, oxygen is reduced
to water. Electron transfer through complexes I, III and IV
generates a proton gradient across the inner mitochondrial
membrane that is used by ATP synthase (complex V) to
generate energy by phosphorylating ADP. The complete
oxidation of one molecule of glucose yields 30-36 molecules
of ATP, two of which come from glycolysis and two from the
Krebs cycle. Glycolysis can also occur in the absence of
oxygen. However, when oxygen is lacking, pyruvate can no
longer be further oxidized within the mitochondria and is thus
metabolized to lactate within the cytoplasm. Glycolysis
represents a much less efficient metabolic pathway compared
with the Krebs cycle and oxidative phosphorylation, because
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there is net synthesis of only two molecules of ATP per
molecule of glucose [7].

Because mitochondria utilize more than 90% of total body
oxygen consumption to produce ATP, the abnormalities in
oxygen consumption described during sepsis are likely to be
associated with evidence of mitochondrial dysfunction.
Studies conducted during the early phase of sepsis (within
the first few hours) have produced conflicting results.
Nonetheless, mitochondrial structure and function were
consistently shown to be impaired in a severity-dependent
manner in animal models lasting at least 12-16 hours [8]. Of
note, ATP levels were variably affected, depending on the
balance between energy production and consumption, the
model and possibly the tissue under investigation. In septic
shock patients studied within 24 hours of ICU admission, the
degree of skeletal muscle mitochondrial dysfunction was
associated with the severity of the disease [9]. In this work,
tissue ATP levels were significantly lower in nonsurvivors than
in an orthopaedic surgical control population, but they were
maintained in those who survived sepsis.

A reduction in energy consumption implies a reduction in
cellular metabolism, which manifests clinically as organ
dysfunction. Rather than being viewed negatively as ‘failure’,
an alternative paradigm may be advanced whereby this
metabolic shutdown represents an adaptive cellular strategy

[10]. In the face of persisting mitochondrial dysfunction and
reduced ATP production, the cell may shift its focus to
survival rather than aiming to continue normal functioning.

The pathogenesis of mitochondrial dysfunction during sepsis
is likely to be highly complex. Nitric oxide (NO), reactive
oxygen species and other inflammatory mediators are produced
in excess and can directly inhibit mitochondrial respiration.
NO competes with oxygen in binding to cytochrome oxidase
(complex IV), thereby decreasing the activity of the enzyme.
This will block the electron transport chain and lead to over-
production of superoxide. Superoxide will react with NO to
generate peroxynitrite and other nitrogen species that are
able to alter the structure and function of several other
mitochondrial proteins, notably complex I [11]. Early cellular
hypoxia may favour the competitive NO-mediated inhibition of
cytochrome oxidase, contributing to the earlier, if not greater,
development of mitochondrial dysfunction [12].

Endocrine changes that occur during sepsis are also likely to
play a role. Among others, thyroid and sex hormones, insulin,
glucocorticoids and leptin positively modulate mitochondrial
energy production, protein synthesis and biogenesis [13-17].
Increased incidences of the low tri-iodothyronine (T3)
syndrome, hypogonadism, insulin resistance, adrenal
insufficiency and decreased circulating leptin levels in
nonsurvivors compared with survivors have been reported

Figure 1

Schematic representation of oxidative phosphorylation within the mitochondria. Electrons donated from NADH and FADH2 pass down the electron
transport chain with oxygen being the terminal acceptor at complex IV. This movement of electrons results in a shift of protons across the inner
mitochondrial membrane, generating the energy necessary for ATP synthase to produce ATP from ADP. FADH2, flavin adenine dinucleotide,
reduced; NADH, nicotinamide adenine dinucleotide, reduced.
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during prolonged sepsis and critical illness [18,19].
Accordingly, depletion of respiratory complex proteins has
been described in the diaphragm in a rat model of sepsis [20].

A further mechanism could be represented by the down-
regulated synthesis of new mitochondrial protein. In human
volunteers, administration of bacterial endotoxin decreased
blood leucocyte expression of mitochondrial respiratory chain
complexes and ATP synthase genes [21].

Assuming that the pathogenesis of MOF during sepsis is
contingent on development of mitochondrial dysfunction and
cellular energetic failure, recovery is likely to occur when
damaged organelles are repaired or replaced. Preliminary
results have shown an association between progressive
improvement in mitochondrial respiration and organ function
in patients who survive their episode of septic shock [22].

Strategies aimed at preventing or reversing mitochondrial
dysfunction and cellular energetic failure may thus represent
a new therapeutic option in the treatment of sepsis (Figure 2).

Prevention and early reversal of
mitochondrial dysfunction
Mitochondrial dysfunction in sepsis can occur even with
aggressive fluid resuscitation [23] and adequate tissue
oxygenation [24,25]. Derangement in liver metabolism possibly

due to mitochondrial damage was recently reported in a
hyperdynamic, normotensive, mechanically ventilated, anti-
biotic-treated septic animal model, despite preserved
microvascular perfusion [26]. Nonetheless, early cellular
hypoxia can further limit aerobic production of ATP and
contribute to the development of energy failure.

Optimization of oxygen delivery can ameliorate cellular
energetic failure provided that mitochondria retain their ability
to produce energy. Patients with severe sepsis or septic
shock whose global oxygen delivery was optimized early after
admission to an emergency room experienced better
outcomes than did conventionally managed patients [27].
Conversely, no benefit [28] or even harm [29] was reported
when a similar approach was adopted after admission to ICU,
when organ failure had already become established. The
same intervention, performed at different time points, had very
different clinical impacts. In the early phase, when the cellular
energetic machinery is still likely to be functional and oxygen
supply may represent a limiting factor, reversal of tissue
hypoxia may ameliorate the impending cellular energetic
failure and reduce the incidence/severity of organ dys-
function. In a later phase, when mitochondrial damage has
occurred and the cell has become intrinsically unable to
utilize oxygen to produce ATP, a similar strategy may not
provide any benefit. Lack of improvement in oxygen
consumption despite a re-established oxygen supply has
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Figure 2

Hypothesized role of mitochondria in the development of MOF and subsequent recovery. Potential therapeutic interventions are illustrated at the
appropriate steps. MOF, multiple organ failure.



been associated with unfavourable outcomes in patients with
sepsis syndrome or septic shock [30].

Hyperglycaemia and insulin resistance are common among
critically ill patients and represent an additional potential
threat to mitochondrial integrity. Acute hyperglycaemia can
dramatically increase the production of reactive oxygen
species in normal bovine aortic endothelial cells [31].
Moreover, insulin stimulates mitochondrial protein synthesis
and oxidative phosphorylation [15]. Maintenance of normo-
glycaemia with intensive insulin therapy during critical illness
has been demonstrated to preserve hepatocyte mitochondrial
ultrastructure and function [32] and improve outcome in both
medical and surgical intensive care patients [33,34].

Reactive oxygen and nitrogen species are over-produced
during sepsis, whereas mitochondrial antioxidants (reduced
glutathione and manganese superoxide) are depleted. The
membrane permeable glutathione ethyl ester can protect
complex I from oxidative and nitrosative damage in an early
phase [35]. Manganese-based superoxide dismutase mimetics
may exert a similar protective effect, scavenging superoxide
anions and preventing them from further reacting with NO to
generate peroxynitrite within the mitochondria [36].

Prevention of cellular energetic failure in the
presence of mitochondrial dysfunction
Once permanent mitochondrial dysfunction has developed,
cellular optimization of any residual ability to produce energy
and/or reduce metabolic requirements may prevent the ATP
level from dropping below the threshold that stimulates
initiation of cell death pathways.

Electron donors that are able to ‘bypass’ defective
components of the respiratory chain may help in attaining the
former objective. Within the inner mitochondrial membrane,
complex II works in parallel with complex I, albeit to a lesser
extent, transferring electrons from FADH2 produced during the
oxidation of succinate to coenzyme Q. Unlike complex I, the
activity of complex II is relatively preserved during sepsis
[9,23,37]. When complex I is inhibited, the administration of
succinate may increase electron flow through the respiratory
chain and thus increase generation of ATP, provided that any
inhibition of the electron transport chain distal to complex II
has not become rate-limiting. Preliminary data from our
laboratory confirm this action. In two different animal models of
sepsis, the infusion of succinate dimethyl ester prevented the
fall in liver ATP content [38] and prolonged survival time [39].

Another possible strategy that could be pursued in the face
of a severe and extended impairment in mitochondrial energy
production is to reduce cellular energetic expenditure.
Hibernating and aestivating animals reduce their metabolic
rate in the face of climate change or drought. Similarly,
oxygen-conforming organisms such as turtles and frogs can
tolerate prolonged periods of hypoxia by suppressing ATP

turnover [40]. Humans do not hibernate or aestivate and have
only a limited tolerance to inadequate oxygenation. Nonethe-
less, patients with chronic coronary artery disease frequently
develop a myocardial contractile dysfunction – termed
myocardial hibernation – that may represent an adaptive
response to ischaemia, rather than depend on an ongoing
energetic deficit, which will recover on restoration of
adequate perfusion [41].

Mechanism(s) governing hibernation remain to be clarified.
Carbon monoxide and NO may mediate the active decrease
in energy demand that occurs in cells that lack oxygen
[42,43]. The natural peptide ‘hibernation induction trigger‘, its
synthetic analogue [D-Ala2, D-Leu5] enkephalin (DADLE) and
other δ-opioids can also reduce cellular metabolism and
protect organs against ischaemia [44]. Rapid induction of
profound cerebral hypothermia in animals that do not normally
hibernate may guarantee protection during prolonged cardio-
circulatory arrest [45]. Mice exposed to hydrogen sulphide
experience a dramatic decrease in their metabolic rate: within
6 hours, oxygen consumption and carbon dioxide production
drop by around 90%, and body core temperature approaches
that of the environment [46]. Such a suspended animation-
like state fully reverses when the hydrogen sulphide is
discontinued, without any permanent behavioural or
functional damage. It is conceivable that, even during sepsis,
induced hibernation may protect the organism from
prolonged energetic failure and enable faster recovery on
resolution of the inflammatory insult. Some caveats do need to
be applied. For example, the hyperthermic response to infec-
tion activates the expression of cytoprotective heat shock
proteins and may therefore be considered beneficial [47].
Therapeutic induction of hibernation may remove this intrinsic
protective mechanism with potentially deleterious results.

The converse may also hold true. Premature stimulation of
cellular metabolism before mitochondria have regained their
ability to respond adequately in terms of energy production may
lead to cellular compromise. Examples of harmful therapeutic
approaches that may be invoked are the use of high-dose
dobutamine [29], thyroxine [48] and growth hormone [49].

Resolution of mitochondrial dysfunction:
arousal from ‘hibernation’
Repair and replacement of damaged mitochondria are
probably controlled at a transcriptional level, but proximal
steps in the signalling pathway still need to be elucidated.
NO was recently suggested to play a major role. Long-term
exposure to a low concentration of the gas triggered
expression of transcriptional factors that regulate mito-
chondrial proliferation and significantly increased mito-
chondrial mass in different cells in culture [50]. NO exerts
different actions depending on the rate, amount and site of
production. The large quantity synthesized by the inducible
isoform of nitric oxide synthase (NOS) during the acute
inflammatory response to sepsis blocks mitochondrial
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respiration and can be cytotoxic. On the other hand, the
smaller amounts of NO produced by the specific constitutive
endothelial NOS may trigger mitochondrial biogenesis in a
later phase. Nitration also dramatically accelerates mito-
chondrial protein turnover, from days to hours [51]. Taken
together, these results suggest that recovery from mito-
chondrial dysfunction may depend on a NO-dependent
signalling pathway. Specific inhibition of inducible NOS
during sepsis may represent a potential therapeutic strategy
[52-55], although dose selection will be critical. This is
pertinent to the dose-related increase in mortality reported in
a phase III trial of a nonspecific NOS inhibitor in septic shock
patients [56]. Indeed, the overall negative outcome of this
study camouflages the survival benefit seen with low doses.

Hormones may play an equally important role. Thyroid
hormones stimulate mitochondrial activity. Injection of T3 in
hypothyroid rats upregulated mitochondrial biogenesis-related
transcription factors [57]. In contrast to the acute response,
persistently low circulating levels of T3 during the prolonged
phase of critical illness may be due to neuroendocrine
dysfunction [18]. Replacement hormonal therapy given at the
right time, when cells have regained the ability to both restore
mitochondrial activity and increase metabolic rate, may
beneficially arouse the cell and promote earlier organ
recovery. However, as described above, thyroxine supple-
mentation may prove dangerous [48], and so the right
conditions must be in place.

Other hormones that could be considered in the treatment of
sepsis are leptin and oestrogen. Leptin is a hormone secreted
by adipose tissue. It regulates food intake and energy balance
to maintain constancy of total body fat mass. In diabetic fatty
rats, ectopic hyperleptinaemia triggered mitochondrial
proliferation, transforming white adipocytes into mitochondria-
rich, fat-oxidizing cells [17]. Administration of oestrogen or
antiandrogen agents after trauma/haemorrhage also increased
mitochondrial enzyme activities, protein synthesis and ATP
levels relative to those in sham-operated controls [58].

A further biological equivalent to sepsis-induced hibernation
is bacterial dormancy. This is a reversible, low-growth state
well recognized in mycobacteria such as Mycobacterium
tuberculosis. Micrococcus luteus can be aroused from its
quiescent phase by an endogenous protein named
‘resuscitation promoting factor’ [59]. As mitochondria
descend from a bacterial endosymbiont, the identification and
application of a similar protein that can specifically stimulate
mitochondrial activity may well yield beneficial results.

Conclusion
Mitochondrial dysfunction occurs during sepsis and may play
a major role in the development of MOF.

Prevention and correction of mitochondrial dysfunction and
cellular energetic failure represent novel strategies that may

improve clinical outcomes of septic patients. Timing of any
intervention appears to be critical and the possibly adaptive
role of some changes currently viewed as pathological must
be considered. The regulated induction of a hypometabolic
state resembling hibernation may help the cell in facing a
reduced capacity to generate energy. The stimulation of
mitochondrial activity and biogenesis during the late phase of
sepsis may accelerate the recovery process. This increasing
insight into underlying mechanisms promises to be an
exciting era of novel therapeutic developments.
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