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Abstract
Meta-analysis can be a powerful tool for demonstrating the
applicability of a concept beyond the context of individual clinical
trials and observational studies, including exploration of effects
across different subgroups. Meta-analysis avoids Simpson’s para-
dox, in which a consistent effect in constituent trials is reversed
when results are simply pooled. Meta-analysis in critical care
medicine is made more complicated, however, by the hetero-
geneous nature of critically ill patients and the contexts within
which they are treated. Failure to properly adjust for this
heterogeneity risks missing important subgroup effects in, for
example, the interaction of treatment with varying levels of baseline
risk. When subgroups are defined by characteristics that vary
within constituent trials (such as age) rather than features constant
within each trial (such as drug dose), there is the additional risk of
incorrect conclusions due to the ecological fallacy. The present
review explains these problems and the strategies by which they
are overcome.

Introduction
Meta-analysis is a tool for quantitative systematic review of
observational studies and controlled trials that weights
available evidence based on the numbers of patients
included, the effect size, and often statistical tests of
agreement with other trials. Meta-analysis may be particularly
suited to critical care medicine. Trials in intensive care
typically enrol patients with a variety of pathologies, which
can make demonstrating treatment efficacy difficult. These
trials are usually underpowered for subgroup analyses.
Multicentre trials can increase power with more patients, but
between-centre heterogeneity can limit this benefit. Although
between-centre heterogeneity can be accounted for,
statistical techniques are evolving and imperfect [1]. Conduc-
ting a trial in a single centre removes between-centre
heterogeneity, but when such trials (for example, those of

early goal-directed therapy for severe sepsis [2] and of tight
glycaemic control in critically ill patients [3]) find treatment
effects, physicians can be reluctant to implement the findings
if they suspect they were unique to the study institution [4,5].
The ability to quantitatively detect subgroup effects within
heterogeneous populations and to demonstrate external
validity should make meta-analyses fundamental components
of the critical care literature.

Unfortunately, meta-analysis in critical care can be misleading.
A 1998 meta-analysis found albumin use in critically ill patients
associated with a 6% increase in absolute mortality [6]. A
6,997-patient randomised controlled trial could not confirm
this finding [7]. Meta-analyses do not always agree, but even
high-quality reviews attempting to reconcile their differences –
such as the review that demonstrated the superiority of
sucralfate over histamine receptor-2 antagonists [8] – have
been contradicted later by definitive clinical trials [9].

Patients in critical care trials are often studied solely because of
their presence in an intensive care unit, sometimes even before
their diagnosis is known. Interventions can be delivered with
differing fidelity and have effects dependent on the baseline
risk, which is seldom constant across trials [10]. Other aspects
of what constitutes intensive care are frequently highly variable.
If not appropriately addressed, heterogeneity in patients,
interventions and context can produce misleading conclusions.
The present review highlights how these conclusions arise, and
explores approaches to these problems.

Identifying publication bias: inspecting the
funnel plot
Conducting a meta-analysis using published study results has
the advantage of using evidence already subjected to peer
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scrutiny. Positive studies have a greater chance of being
published, however, which can falsely exaggerate the results
[11]. To combat publication bias, meta-analyses may also
include unpublished data [12], a process facilitated by the
modern requirement to prospectively register clinical trials.

Regardless of whether they incorporate unpublished data, all
meta-analyses should check for inclusion bias. A funnel plot
(Figure 1) graphs each study’s estimated treatment effect
against an estimate of the precision of this estimate [13],
such as the standard error or the number of patients
included. Less precise estimates should become increasingly
spread out, forming a funnel (Figure 1a). Assymmetry
suggests omission of some studies, although study hetero-
geneity and the small study effect [14] can produce the same
pattern (Figure 1b,c). Publication bias can also produce a
hollow plot, where studies showing minimal effect are missing
while strongly positive or negative studies are included
(Figure 1e). Publication bias can be statistically tested and
even corrected [14], but the suggested methods have not
gained widespread acceptance [15].

Publication bias may be a particular problem in critical care
medicine. Only 49 out of 139 critical care meta-analyses
adequately reported an absence of publication bias [16].
Inspecting the funnel plot, however, is effective only when
there are enough trials [13]. In critical care, with
comparatively few trials for any clinical question but with a
relatively open research community, the certainty that all
appropriate trials have been included is at least as useful.

Combining different measures of treatment
effect: risk difference, risk ratio or odds
ratio?
A drug that reduces mortality by 20% will save a greater
number of people when used in a high-risk population versus
a low-risk population. Displaying the range of measures of
absolute effect (usually the risk difference; Table 1) in a meta-
analysis demonstrates this fact, making the data intuitively
accessible. If attempting to combine estimates of treatment
effect in different populations, however, it is better to use
measures of relative risk – such as odds ratios, risk ratios or
hazard ratios [17,18].

Unfortunately the choice of a suitable summary statistic is
more complicated than would appear. Odds ratios and risk
ratios both reflect relative risk, but although related they are
fundamentally different (Table 1). The odds ratio is the only
valid measure of association in case–control studies. As
meta-analysis developed from the statistical approaches used
to combine case–control studies, the odds ratio has become
the default measure of effect [17]. Although theoretically the
mathematically superior approach, in certain circumstances
there are empirical reasons for challenging this default. For
example, a review of 551 meta-analyses found median study
heterogeneity was lower when a pooled relative risk (rather

than odds ratio) was used [17]. In individual studies, how-
ever, many analyses were clearly better performed with one
or the other, while some analyses showed no difference. The
factors influencing which summary statistic was preferable
could not be predicted, and neither statistic was found clearly
superior overall.

Meta-analysis avoids Simpson’s paradox
It might be tempting to simply pool data from all patients in a
number of seemingly similar trials as if they came from one
large study. Unfortunately, this can lead to Simpson’s paradox
[19], where (for example) a beneficial effect in each study can
become an apparently detrimental effect when the data are
aggregated. In practice, Simpson’s paradox only arises when
pooling the results of observational studies in which there is a
severe imbalance in an important confounding factor along
with unequal group assignments. Randomisation in controlled
trials should prevent this occurrence.

Meta-analysis overcomes Simpson’s paradox by accounting
for the enrolment of patients in different studies. There is a
published example [20], but the three theoretical studies
presented in Table 2 may be clearer. In this case, all three
studies find treatment associated with lower mortality than
the placebo. If the data are simply pooled, the relative risk is
reversed. A fixed-effects meta-analysis finds the risk ratio to
be 0.898, however, which agrees with the individual study
conclusions. Figure 2 shows a graphical representation of a
similar effect.

Are studies too different to combine?
Detecting heterogeneity using the Q test and
the I2 statistic
It is not surprising that a new drug tested at a moderate dose
in very ill patients receiving excellent care might have a
different effect when tested at a high dose, with inconsistent
delivery and monitoring, in patients across a spectrum of
disease severity in a hospital struggling to provide basic
services. Some trials are simply too different to combine.
Heterogeneity amongst patients, contexts or interventions is
problematic only if the intervention’s efficacy is influenced by
one of these factors. In critical care, this is often the case: for
example, with activated protein C, which was effective in a
mixed population containing high-risk patients [21] but not in
a low-risk population [22].

If the confidence intervals of the Forest plot (Figure 3) do not
overlap, the true treatment effect in those studies is probably
different. Heterogeneity can also be statistically tested, most
commonly using the Q test. A small P value means the null
hypothesis (of study homogeneity) should be rejected – and
the studies should not be combined, at least not without
adjustment. Unfortunately, this test’s power is relatively low
when there are few studies, but is prone to overdetect
heterogeneity when there are many studies. Threshold P
values are arbitrarily often set higher or lower than 0.05.
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A more recent approach is to report the I2 statistic [23],
which quantifies the percentage of total variation between
studies that is due to heterogeneity rather than due to
chance. A value of 0% indicates no heterogeneity, with the

scale increasing to 100%. In contrast to the Q test, the I2

statistic facilitates the comparison of meta-analyses of
different sizes. There is no value of I2 that is considered too
high: the original description suggested I2 values of 25%,
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Figure 1

Funnel plots demonstrating publication bias [15]. (a) Publication bias is not present, so the funnel plot should be roughly symmetrical. (b) If the plot
is not symmetrical this may indicate publication bias, but there are other possible explanations. The small outlier study may be of lesser quality,
which often results in exaggerated treatment effect sizes, or it may have been performed in a particularly high-risk population where the effect is
large. (c) Also asymmetrical, it appears that the smaller, less precise studies are all much more positive than the larger, more precise studies. This
appears a good example of publication bias. (d) If the control event rates are added to the plot, however, the interpretation may be different. Trials
with the lowest control event rates demonstrate the most positive results. The intervention may work better in lower risk patients. Alternatively this
could truly represent publication bias. From the funnel plot it is impossible to know. (e) The funnel plot is hollow, which is possibly publication bias
of the type where significant studies are more likely to be published than those showing no difference.



50% and 75% indicated low, moderate and high levels of
heterogeneity, respectively, but that other factors (such as
consistency of direction of effect and the clinical
characteristics of the study) precluded definition of an
arbitrary threshold.

Dealing with heterogeneity: study selection –
fixed-effects models and random-effects
models
If heterogeneity is detected, it is simplest to exclude the
outlier studies, preferably with some justification. Excluding
studies simply because they do not agree with the majority
defeats the purpose of the meta-analysis. To counter the
suspicion that inclusion criteria have been adjusted to
achieve a desired effect, an analysis plan to deal with
heterogeneity should be specified in advance. If hetero-
geneity is detected, the plan should identify which trial
characteristics (such as quality, drug dose, baseline risk, and
so forth) will be grounds for exclusion.

Heterogeneity is sometimes more informative than proble-
matic. The cleanest signal would be found by looking only at
trials with similar eligibility and exclusion criteria, drug doses,
and hospital contexts. Showing a qualitatively consistent
treatment effect despite significant heterogeneity, however, is

equivalent to showing the treatment works in a variety of
contexts – the definition of external validity.

Rather than exclude studies, the other simple approach is to
statistically allow for differences between trials using a
random-effects model. The intuitive assumption underlying
meta-analysis is that of fixed effects: that a number of
different studies are being combined to estimate one true
effect of the intervention. In contrast, the random-effects
model does not assume an intervention has the same effect
in each of the studies. An individual study is therefore
considered a random sample from a hypothetical population
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Table 1

Odds ratio, relative risk and risk difference

Treatment Placebo

Alive a b (a + b) = e

Dead c d (c + d) = f

(a + c) = g (b + d) = h i

Risk difference = risk of death with treatment – risk of death with
placebo = (c / g) – (d / g). Risk ratio = risk of death with treatment /
risk of death with placebo = (c / f) / (b / e). Odds ratio = odds of death
with treatment / odds of death with placebo = (c / a) / (d / b). The
odds ratio approximates the relative risk when the event rate (here,
death) is uncommon; however, when the event rate is common the
odds ratio will overestimate the relative risk.

Figure 2

Demonstration of Simpson’s paradox occurring if results from two
clinical trials are simply pooled rather than subjected to meta-analysis.
The slope of each vector represents a mortality rate (deaths / total
number of patients) in patient groups taking Drug 1 (dark lines) and
Drug 2 (light lines). OA and OC represent the results of one trial, and
AB and CD the other trial. OA has the lesser slope, meaning Drug 1 is
superior in this trial. Similarly, AB and CD demonstrate Drug 1 is
superior. If the data are simply pooled, the overall effect slope (of lines
OB and OD) is paradoxically reversed. The same diagram can be used
to demonstrate Simpson’s paradox due to subgroup effects in a single
nonrandomised trial, such as that in Table 2. Here OA and OC
represent results from one stratum of the trial, and AB and CD the
other. When the confounding effect of stratum is ignored, Drug 2 is
paradoxically superior. Adapted from [39].

Table 2

Demonstration of Simpson’s paradox in the pooling of data from three observational studies, showing the value of meta-analysis

Mortality

Treatment Placebo Risk ratioa Significance

Study 1 97 / 492 = 19.7% 202 / 802 = 24.8% 0.794 0.03

Study 2 590 / 795 = 74.2% 410 / 510 = 80.4% 0.924 0.01

Study 3 300 / 610 = 49.2% 286 / 490 = 58.4% 0.843 0.002

Pooled data 987 / 1,897 = 52.0% 898 / 1,812 = 49.6% 1.050 0.13

Meta-analysis of the above data (using [40]), fixed-effects model: Q statistic = 3.398, P = 0.18; combined risk ratio = 0.898, P = 0.0001.
aTreatment / placebo.



of similar studies. The study’s effect estimate is consequently
considered less precise.

Informative confounding: the two types of
heterogeneity
Rather than adjust for different effects in different studies, it
can be better to realise that doing so obscures potentially
important information. If a drug is of benefit in men but does

some harm to women, knowing this might be more important
than using a single summary statistic to conclude overall
moderate advantage.

Between-study variation in the constituent trials of a meta-
analyses falls into two categories: trial-level factors and
patient-level factors. Trial-level factors apply to all patients in
each trial: for example, drug dose. In contrast, patient-level

Available online http://ccforum.com/content/12/4/220

Page 5 of 8
(page number not for citation purposes)

Figure 3

Illustrations of Forest plots. (a) Statistical heterogeneity. I2 = 62%, heterogeneity chi-squared = 23.54 (degrees of freedom = 9), P = 0.005. 
(b) Lack of statistical heterogeneity. I2 = 0%, heterogeneity chi-squared = 1.25 (degrees of freedom = 9), P = 0.999. 95% CI, 95% confidence
interval. Based on Stata output using modified sample data [http://econpapers.repec.org/software/bocbocode/s456798.htm].



factors such as age and sex vary both within and between
trials. Heterogeneous trial-level factors are generally easily
taken into consideration, but patient-level confounding can be
particularly difficult.

Dealing with trial-level heterogeneity: subgroup
meta-analysis and meta-regression
The two approaches to dealing with trial-level heterogeneity
are subgroup meta-analysis and meta-regression. Consider a
number of trials of a drug, some of which use the oral route
and some the intravenous route. Conducting separate meta-
analyses on each of these strata makes clinical sense,
particularly if there is a difference in the observed effect
between the two routes. One could then conclude for each
route whether the drug was beneficial. This analysis will also
indirectly estimate the effect of the administration route, but
the possibility of confounding (for example, perhaps patients
who could use the oral route were less unwell) makes such a
comparison unwise.

The alternative approach is meta-regression [24], a statistical
model quantifying the effect of various study characteristics
on the estimated overall effect. This approach is particularly
useful for understanding the effect of a factor present at more
than two levels, the classic example being drug dose. Meta-
regression will quantify how much of the between-trial
heterogeneity is explained by the various drug doses used,
and is most useful when there is a significant treatment effect,
a large number of studies, sufficient between-study variation
in the postulated confounding variable, and sufficient
heterogeneity among the treatment effects [25].

The main criticism of these techniques is that they constitute
data-dredging. If trials are split into too many subgroups or too
many factors are incorporated into meta-regressions, the
probability of a false-positive conclusion due to multiple
comparisons increases. Conversely, the small number of trials
on which most of these analyses are based means power is
limited, so true associations may be missed [26]. As with
subgroup analyses in clinical trials, splitting a meta-analysis into
subgroups is considered by many to be hypothesis generating
at best. Nonetheless, the hypotheses may be stronger if the
subgroups are based on prerandomisation characteristics, were
planned a priori and allowed an adequately powered analysis,
and if there is statistical adjustment for multiple testing [27].

Dealing with patient-level heterogeneity: avoiding the
ecological fallacy
Using meta-regression to account for differences in the types
of patients enrolled is possible, but potentially problematic.
Such an analysis must use average patient characteristics.
The relationship between the effect estimate and average
patient characteristics across trials may not be the same as
that relationship within trials, as is demonstrated in Figure 4.
In the upper part of the figure, treatment effect is related to
age within each trial, but is not related to the mean age

across trials. In the lower part of the figure, the opposite is
true: there is a relationship across trials, but not within trials.
This is a classic example of the ecological fallacy, in which
incorrect inferences about individual characteristics are made
based upon aggregate statistics.

The term ecological fallacy was coined as an explanation for a
phenomenon observed in the 1930 US census [28]. Literacy
had been positively correlated with immigrant numbers in
each US state, which lead to the unlikely conclusion that
immigrants were more literate. When literacy within each
state was examined, however, the opposite relationship was
observed. The explanation was that immigrants tended to
settle in states where the native population was more literate.

The only way to avoid the ecological fallacy when considering
possible patient-level confounding in a meta-analysis is to
examine data from individuals.

Critical Care    Vol 12 No 4 Reade et al.
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Figure 4

Ecological fallacy in meta-regression. Hypothetical relationships
between age and treatment effect both within trials (represented by
lines) and between trials (represented by dots). Upper: treatment
effect is related to age within each trial, but is not related to the mean
age across trials. Lower: relationship occurs across trials, but not
within trials. Stat Med, How should meta-regression analyses be
undertaken and interpreted?, Thompson SG, Higgins JP, Copyright 
© 2002 John Wiley & Sons Limited. Reproduced with permission [24].



Baseline risk: an example of patient-level
heterogeneity particularly relevant to critical
care
It is simplest to assume the treatment in question has the
same relative effect in patient groups with different baseline
risks. This assumption can be inappropriate, particularly in
intensive care, where treatments (such as activated protein C)
often have substantial potential for harm as well as for benefit.
If a treatment effect is heavily influenced by baseline risk (for
example, harmful in low-risk patients and beneficial in those at
high risk), it is necessary to adjust for risk in a multivariable
model or stratified analysis. Failure to do so gives the
appearance of random variation (or the variation might be
misassigned to another factor, such as trial quality), whereas
in reality it is an important finding. The traditional approach has
been to use the event rate in the control group as a surrogate
for baseline risk. This approach introduces bias due to
regression to the mean, and is now considered inappropriate
[29]. Alternatives have been proposed [30] but, as with other
patient-level factors, the ideal solution is to investigate the
interaction of treatment effect with individual patient
characteristics [29], ideally using individual patient data.

Individual patient data meta-analysis
Analysing data at an individual patient level is the most
powerful meta-analytic technique available. Statistical signifi-
cance is crudely determined by a ratio of explained variation
over unexplained variation. The ability to account for individual
patient covariates, for treatment differences between studies,
and for the interactions of these factors means a greater
proportion of the unexplained variation can be accounted for –
increasing the power of the meta-analysis.

Other advantages of individual patient data meta-analyses over
those analyses using aggregate patient data include the ability
to undertake sufficiently powered exploratory subgroup analyses
whilst avoiding the ecologic fallacy, to adjust for differences in
baseline risk, to analyse time to event data rather than single-
point outcome statistics, to update survival information, to carry
out a detailed check of the primary data, and to reanalyse the
data using potentially more appropriate methods [31]. Examples
of such re-analyses include the ability to check the statistical
assumptions of regression models, to reanalyse the data using
intention-to-treat analysis, and to include patients inappropriately
excluded from the original analysis.

A simulation study comparing aggregate data meta-regres-
sion and individual patient data meta-analysis found the
individual patient data approach had higher statistical power.
There was little agreement between the estimates of effect
size between the two methods [32]. Meta-analysis of
individual patient data ‘is acknowledged as the gold standard’
[33]. Nonetheless, individual patient data meta-analyses are
performed 20 times less frequently than those using
aggregate patient data [34,35], because access to detailed
trial results is difficult.

Prospective meta-analysis
Most meta-analyses are conducted retrospectively, when a
series of smaller trials have failed to demonstrate a convin-
cing result due to lack of power, or are conducted to explore
subgroup effects. Where possible, the Cochrane Collabora-
tion advocates prospective meta-analysis [36], which over-
comes inconsistencies in data collection, entry criteria, study
protocols and outcome measures, as well as the criticism of
data-dredging. Even if individual studies are adequately
powered for their primary endpoints, this is unlikely to be true
for secondary outcomes and for important subgroups.
Additionally, trials are conventionally funded to have 80%
power, implying a 20% chance of missing a true treatment
effect. Power calculations are often based on poor-quality
data, and tend to be overoptimistic – such as in the recent
trial of activated factor VII that hypothesised a 33% relative
improvement in outcome for patients with acute intracerebral
haemorrhage [37]. These factors all argue for consideration
of prospective meta-analysis in the planning of any clinical trial.

Reporting of meta-analysis
Even if appropriately conducted, a meta-analysis must be
adequately reported to facilitate scrutiny of the results.
Unfortunately in critical care medicine this is frequently not
the case. A systematic review of 139 meta-analyses relevant
to critical care found overall quality poor [16], with the most
common omissions being failure to report whether a
comprehensive literature search was conducted, how
inclusion bias was addressed, and assessment of the validity
of the included studies. The mean quality improved after
publication of the Quality of Reporting of Meta-analyses
(QUORUM) guidelines [38].

Conclusion
Better awareness of the issues surrounding meta-analysis
particularly relevant to critical care – especially the existence
of the ecological fallacy and the possible interaction of
treatment with baseline risk – will hopefully improve the
performance, reporting and critical review of this valuable
technique. Many pitfalls are avoided if a meta-analysis uses
individual patient data and is prospectively planned,
suggesting future clinical investigators should carefully
consider the advantages and disadvantages of this approach.
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