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Abstract

An association between abnormal gastrointestinal perfusion and critical illness has been
suggested for a number of years. Much of the data to support this idea comes from studies
using gastric tonometry. Although an attractive technology, the interpretation of tonometry
data is complex. Furthermore, current understanding of the physiology of gastrointestinal
perfusion in health and disease is incomplete. This review considers critically the striking
clinical data and basic physiological investigations that support a key role for gastrointestinal
hypoperfusion in initiating and/or perpetuating critical disease.
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Introduction
Largely circumstantial evidence continues to implicate the
gastrointestinal tract in the pathogenesis of the systemic
inflammatory response syndrome (SIRS) and multiple
organ dysfunction syndrome. The present review explores
why the role of gastrointestinal perfusion has become an
important focus of critical care and anaesthesiology
research. Specifically, we consider conflicting, unresolved
clinical data put forward in support of the idea that the gut
is the ‘motor of critical disease’. We also consider why
current, albeit incomplete, understanding of gastrointesti-
nal circulatory physiology supports this concept.

The idea that the gastrointestinal tract provides the ‘spark’
and/or ‘fuel’ for critical disease has been pursued since
the series of clinical studies conducted in the 1960s by

Fine and coworkers [1,2], who proposed that a gut-medi-
ated factor, perhaps endotoxin, contributed to sepsis.
However, although this attractive idea has gained further
support [3,4], pinpointing the exact role of the gastroin-
testinal tract has proved complex.

One model proposed to explain the involvement of the gut
in this process is a two-step mechanism (Fig. 1). First,
gastrointestinal perfusion and therefore tissue oxygenation
is compromised. Then, as a result of tissue damage, dis-
ruption of the mucosal barrier and access to the systemic
circulation of toxic entities occurs. The entities proposed
include bacteria, bacterial components (eg endotoxin) and
chemicals normally found in the bowel lumen. An alterna-
tive concept is that the second step involves ischaemia–
reperfusion injury of a large viscus, the gastrointestinal
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tract, with consequent massive release of cytokines and
other proinflammatory mediators. The present review does
not focus on the controversies that surround translocation
or increased permeability of the gastrointestinal mucosa,
or on the evidence for a mechanism that involves
ischaemia–reperfusion.

In the clinical setting the results of a number of studies are
offered as an example of evidence for the ‘gut hypothesis’
(Fig. 1). The majority of these studies used gastric tonom-
etry – the only clinical tool for monitoring gastrointestinal
perfusion that is widely available at present. Gastric
tonometry, using gastric intramucosal pH (pHi) as an index
of gastric perfusion, is a highly sensitive but relatively non-
specific predictor of outcome after high-risk major surgery
[5], cardiac surgery [6], in a cross-section of patients
admitted to the intensive care unit (ICU) [7–9] and in ICU
patients with sepsis [10] or acute circulatory failure [11].
However, these data do not establish a causal role for gut
hypoperfusion in these situations. The link between gastric
perfusion and abnormal tonometry-derived variables is
complex. If one accepts that tonometry data reflect perfu-
sion state, abnormal perfusion may still represent an
epiphenomenon rather than a causative mechanism. In
many ways these clinical studies in the critically ill and
high-risk surgical patient serve only to highlight our incom-
plete physiological understanding of the gastrointestinal
tract. We review persuasive data from both human-based
and laboratory-based studies that suggest that the
splanchnic circulation is important in both health and
disease, maintaining regulatory mechanisms that are not
obviously linked to gastrointestinal homeostasis alone.
Before presenting this data, we briefly review the labora-
tory and clinical techniques that have been used for the

assessment of gastrointestinal perfusion. A particular
focus is on gastric tonometry, the only technology that has
accumulated a substantial body of clinical data.

Assessment of gastrointestinal perfusion
A number of techniques are available for the assessment
of gastrointestinal perfusion. Several methods measure
portal blood flow or total liver blood flow either directly or
indirectly. These include plasma indocyanine green clear-
ance [12] and portal vein catheterization with measure-
ment of blood flow blood flow, oxygen saturation and
lactate [13]. Although these techniques have contributed
to our understanding of basic physiology, they are not
widely used clinically and, in addition, measure total
hepatosplanchnic perfusion. We do not focus on these
methods any further.

A number of techniques that have not reached the clinical
arena are utilized widely in research in this field, and are
mentioned in this context throughout the present review.
These include Doppler flowmetry of both individual
mesenteric vessels and of the serosa and mucosa of the
gut [14], reflectance spectrophotometry to index gut
mucosal haemaglobin concentration and saturation [15],
and the use of oxygen electrodes to assess tissue oxygen
levels in the colon [16]. A gut oximeter attached to the
antimesenteric boder of the intestine has also been used
in animal studies [17]. Radioactive, colour-labelled or fluo-
rescent microspheres can be used in animal studies;
when the animal is killed at the end of the study, the distri-
bution of the spheres quantifies relative blood flow to dif-
ferent tissue beds against a reference level [18].

The only practical technique for assessing gastrointestinal
perfusion that has entered clinical practise is gastrointesti-
nal tonometry for the measurement of gut intraluminal CO2
(Fig. 2). It is worth at this point exploring the relationship
between gastrointestinal intraluminal CO2 and blood flow.

The assumption that intraluminal gut CO2 is elevated
when local perfusion is compromised is based on the
concept that in situations where gastrointestinal perfusion
is reduced oxygen delivery falls below a critical level,
resulting in anaerobic cellular metabolism that leads to
local lactic acidosis and generation of CO2. An alternative
or additional explanation may be inadequate washout of
CO2 due to low flow. When gastrointestinal blood flow is
reduced by restriction of superior mesenteric artery (SMA)
blood flow in the absence of the hormonal milieu that
occurs with systemic hypovolaemia, mucosal pH
decreases (CO2 increases) only when flow is less than
50% of baseline [19]. However, this relationship may not
hold in hypovolaemia and shock, where vasoactive media-
tors released in response to decreased intravascular
volume are likely to have significant effects on the micro-
circulation.

Figure 1

The ‘gut hypothesis’ for the pathogenesis of critical illness. MODS,
multiple organ dysfunction syndrome.
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Temperature can be an additional confounding factor
when the CO2 is measured in the gaseous phase in the
stomach, and this is indexed against arterial CO2 mea-
sured in the liquid phase. If the two samples are at differ-
ent temperatures, a methodological error is introduced
[20]. It has been suggested that in some cases the
Haldane effect may be responsible for increased CO2
levels in situations of increased oxygen extraction in the
absence of decreased perfusion [21]. Clearly local meta-
bolic factors that alter the position of the haemaglobin
CO2 dissociation curve could result in changes in mea-
sured gastric CO2 in the absence of any alteration in local
CO2 production. Although the assumption is made that
the CO2 is of mucosal origin, and this is supported by his-
tological damage to the mucosa in shocked patients, it is
possible that the CO2 could be derived from the serosal
or muscular levels of the gastrointestinal tract. There are
some data to suggest that altered substrate metabolism in
the gastrointestinal mucosa may also influence CO2 pro-
duction. A lower gastric pHi was observed in swine that
were haemorrhaged and resuscitated with a haemaglobin
substitute presented in a maltose-containing preparation
than those that were resuscitated with a nonsugar-con-
taining preparation [22]. However, hydoxyethyl starch pre-
sented in a glucose-containing carrier solution produced
less derangement of pHi than the same starch presented
in a saline carrier (Wilkes NJ, Woolf R, Mutch M,
Stephens R, Mooney L, Mallett SV, Peachey T, Mythen
MG, unpublished data).

The development of gastric tonometry as a practical clini-
cal technique has been limited by both methodological
drawbacks and problems of interpretation. The original
technique of manual saline tonometry was limited by the
inconvenience of having to obtain and process samples
manually, by slow equilibration times and by errors associ-
ated with measurement in the blood gas analyzer. The
newer technique of automated semicontinuous air tonom-
etry uses infrared spectrophotometry to measure CO2.
This system also has the advantage that the partial carbon
dioxide tension (PCO2) in the intragastric balloon equili-
brates more rapidly with the PCO2 in the stomach, and
accurate readings are available within 30 min of com-
mencing monitoring.

The vast majority of clinical outcome and intervention
studies use the derived index of gastric pHi. This is
obtained by using a formula to produce a value that is
claimed to be representative of the tissue pH in the gastric
mucosa. However, this assumes that the tissue bicarbon-
ate is equivalent to the arterial bicarbonate. If this is not so,
then the derived pH will be inaccurate. Another way of
considering this is that the tissue CO2 signal is being con-
founded by systemic acid–base disturbances (eg meta-
bolic acidosis) that are known to be independently
predictive of outcome.

Recent consensus is that presenting the result as the
arithmetic difference between the PCO2 measured in the
stomach and the arterial or end-tidal PCO2, the CO2 gap
(gastric PCO2 – arterial PCO2, or gastric PCO2 – end-tidal
PCO2), will avoid the problems outlined above [23]. Confir-
mation that the established clinical correlates with pHi are
also true for the CO2 gap is awaited.

Assessment of gut luminal CO2 can be achieved using
other techniques and at other sites. Tonometry has also
been conducted in the colon [24] in human clinical studies
and in the oesophagus [25] in animals in an attempt to
develop an easily accessible site for assessing gastro-
intestinal perfusion. The sublingual mucosa is an attractive
site for clinical measurement because of its ease of
access when compared with other parts of the gastro-
intestinal tract. However the anatomical basis of sublin-
gual blood flow is significantly different from that of the
more distal gut, and it is unclear whether this area has the
same susceptibility to hypoperfusion as other gut regions
in times of stress. Sublingual capnometry using a CO2
electrode placed on the sublingual mucosa has been
investigated in humans with limited success [26].

An overview of the physiology of
gastrointestinal perfusion
Under normal circumstances, in addition to the fundamen-
tal role of the splanchnic circulation in maintaining liver and
gut perfusion to maintain mucosal integrity, the splanchnic
bed also acts as a ‘circulatory sink’ [27]. The redistribution
of blood flow that occurs during feeding and exercise are
routine haemodynamic challenges for the splanchnic circu-
lation. Exploration of how splanchnic perfusion copes at

Figure 2

Tonometry in the stomach. CO2 diffuses into the gastric tonometer
balloon.



these extremes of normal homeostatic function illustrates
the regulatory mechanisms at play (Fig. 3).

We concentrate on splanchnic rather than hepatic perfu-
sion [28], the microvascular perfusion of which has been
considered in detail elsewhere [29]. Unless stated other-
wise, the studies quoted were conducted using laboratory
animal models.

The hepatosplanchnic circulation receives 30% of total
cardiac output. With increasing age, splanchnic blood flow
declines both absolutely and as a fraction of total cardiac
output [30]. Splanchnic anatomy is described in detail else-
where [31]. Briefly, the mesenteric circulation consists of
the muscularis propria, submucosa and mucosa, which are
arranged in parallel [32]. Resistance arterioles regulate
blood flow to the splanchnic bed, so at constant hydrostatic
pressure flow is inversely proportional to resistance.
Although these arterioles partake in a markedly less impres-
sive autoregulatory system than in the kidney or brain, they
do enable a partial compensation for falls in blood flow [33].
The tone of these vessels depends on the complex balance
between neurally mediated sympathetic vasoconstriction,
the local action of vasoregulatory substances that are under
the influence of the apparently paradoxically named
‘sensory-motor’ nerves, the parasympathetic cholinergic
nerve supply, the enteric nervous system and endothelial-
derived agents [34] (Fig. 4).

In most models, norepinephrine (noradrenalin) is the key
sympathetic-mediated vasoconstrictor acting with the
cotransmitters ATP [35] and neuropeptide Y [36], the
latter contributing to perhaps 30% of sympathetic vaso-
constriction [37]. The vasodilatory calcitonin gene-related

peptide [38] is the main neurotransmitter released at
sensory-motor nerves, among many other putative agents.
The enteric nervous system includes the nonadrenergic
noncholinergic system that supplies perivascular myen-
teric nerves [39]; nitric oxide (NO) is a putative neuro-
transmitter in this system, in addition to the
well-established endothelium-derived role in maintaining
basal vascular tone [40]. NO inhibits the synthesis [41]
and potent vasoconstrictor action [42] of another
endothelial-derived factor, endothelin-1 [43], which
belongs to a family of cytokines that exhibit many other
roles [44]. Infusion of endothelin-1 produces mesenteric
vasoconstriction in the rat, an effect that is attenuated by
bosentan, an endothelin-receptor antagonist [45]. Inhibi-
tion of NO synthesis not only reveals endothelin to have a
tonic pressor role [46], but also increases intestinal
epithelial permeability [47]. Human studies show that
endothelin-1 [48] and NG-monomethyl-L-arginine
(L-NMMA) both reduce splanchnic blood flow, but prior
administration of L-NMMA prevents the vasoconstriction
normally seen with endothelin-1 [40]. In damaged or
absent endothelium in which there is impaired NO produc-
tion, sympathetic-mediated vasoconstriction has been
reported to be augmented, whereas paradoxical vasocon-
striction is seen on application of established vasodilatory
agents [49]. Such pharmacological interplay may be part of
an even more complex system, given that there is evidence
for neuromodulation occurring between NO, sympathetic
nerves and other sensory-motor neurotransmitters
[38,50,51]. Furthermore, there is intriguing data indicating
that gastric perfusion can be altered by flow characteristics,
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Figure 3

A dynamic balance between vasodilatation and vasoconstriction in the
gastrointestinal blood supply exists during both health and disease.

Figure 4

A complex interplay of neural, hormonal and endothelial-derived factors
regulates the balance of gastrointestinal perfusion between
vasodilatation and vasoconstriction. Question marks indicate possible
interactions; dashed lines indicate endothelium-derived production.
ACh, acetylcholine; CCK, cholecystokinin; CGRP, calcitonin gene-
related peptide; EDHF, endothelium-derived hyperpolarizing factor;
5-HT, 5-hydroxytryptamine; PG, prostaglandin; VIP, vasoactive
intestinal peptide.



and not simply by volume status. Pulsatile cardiopul-
monary bypass results in reduced disturbance in pHi as
compared with nonpulsatile cardiopulmonary bypass [52].

Recent biomechanical modelling, based on morphometric
mapping of the mesentery, indicated that approximately
40% of the mesenteric circulation is contained in venules,
which represent the bulk of the mesenteric microcircula-
tion [53]. Precapillary and postcapillary sphincters deter-
mine the tone of these capacitance vessels [54]. The
combined action of such capillary sphincters and the
resistance arterioles effects intraorgan redistribution [55].

Splanchnic oxygen consumption is 20–35% of total body
oxygen consumption [56]. In general, animal models show
that oxygen consumption is maintained, even at substan-
tially lower blood flow, by the ability to increase oxygen
extraction; only at very low blood flow is oxygen uptake
dependent on blood flow [57,58]. This reserve is facili-
tated by microvascular adaptation; a relatively underper-
fused, extensive network of collateral capillary beds [59]
becomes an additional conduit during periods of
decreased oxygen delivery [60]. Mucosal permeability may
therefore be protected to a large degree, only becoming
compromised when oxygen uptake is below 50% of
control [61]. More recent data from human studies [62]
suggest that oxygen supply dependency may occur with
as little as 30% reduction in gastrointestinal blood flow,
with mucosal supply dependency (identified using contin-
uous flow gastric tonometry) occurring before global
splanchnic supply dependency can be identified (using
portal venous CO2 measurement). Data from studies in
humans using tonometry suggest that the mucosa may
respond differently to alternative causes of reduction in
oxygen delivery. Although stagnant hypoxia is readily
detected [63], sensitivity to anaemic hypoxia seems to be
much lower [64].

Feeding
The anticipation and ingestion of food results in neurally
mediated sympathetic increases in heart rate, cardiac
output, plasma norepinephrine levels and peripheral
(forearm) vascular resistance [65]. Within 15 min of food
ingestion, SMA blood flow can double from 500 to
1000 ml/min [66], depending on caloric load [67], food
volume and type. For example, oral alcohol causes an
increased SMA blood flow compared with alcohol-free
control [68]. Elevation in SMA blood flow correlates
closely with amino-terminal neurotensin and norepiniphrine
[67]. Sensory-efferent/motor nerves may play a key role in
‘fine-tuning’ this process; distension of the large intestine
induces SMA smooth muscle hyperpolarization [69] and
hence increased blood flow. This may partly explain the
observation that the site of feeding can produce differen-
tial mesenteric blood flow effects [70]. Fasting for 1 day
produces significant mucosal atrophy in the rat [71].

Despite the gut being the largest endocrine organ in the
body, the local and cardiovascular effects of many of the
gut-derived hormones that are stimulated by feeding have
been described relatively recently, and their roles remain
unclear [72]. Established humoral agents including
vasoactive intestinal peptide [73] and cholecystokinin
[74] promote vasodilatation. During ingestion, systemic
blood pressure and cardiac output are maintained by
increased sympathetic drive, a feature that is absent in
patients with autonomic failure [66]. Within 5–30 min
after a meal, all cardiovascular responses to feeding
subside, except that increased mesenteric blood flow is
sustained whereas skeletal muscle blood flow decreases
in resting animals [75]. Thus, digestion is accompanied
by an increase in total body, myocardial, splanchnic and
intestinal oxygen consumption.

The increased metabolic demands of active absorption
are proportionally greater than the increases in splanchnic
blood flow, suggesting that the active gut may incur an
oxygen debt in the same way that we consider the whole
body does during exercise and physiological stress.
Although the exact mechanism of the absorptive small
intestine villi is disputed across species [76–78], numer-
ous authors support the idea that these villi are particularly
susceptible to deleterious circulatory or hypoxic changes
[79]. The villi exhibit an oxygen countercurrent exchange
mechanism, producing relative hypoxia at the luminal tip
compared with at its base, even under normal conditions
[80,81]. The potential vulnerability of such relatively
hypoxic tissue may be potentiated by the villus architec-
ture, which theoretically promotes the phenomenon of
plasma skimming, and hence lower haematocrit and
oxygen delivery [82], although experimentally this is not
seen at reduced perfusion pressures [83].

In the clinical setting there is evidence that the increased
metabolic requirements of an absorbing gut coupled with
inadequate perfusion due to hypovolaemia or vascular
insufficiency may result in a critical imbalance between
oxygen supply and demand. The clinical syndrome of
mesenteric angina occurring after oral intake is well rec-
ognized. Angiography of some of these patients reveals
critical arterial stenosis. In patients with stenoses a pro-
portion have an increased difference between their arter-
ial and intragastric PCO2 (an elevated PCO2 gap) at rest,
suggesting poor perfusion. Tonometry during moderate
exercise demonstrated an abnormal CO2 gap in all
patients with stenoses in one study, and this abnormality
was absent in control individuals [84]. Revascularization
resulted in normalization of perfusion in all patients. The
clinical importance of this in a critical care setting is high-
lighted by case reports that describe patients who have
sustained massive bowel infarction soon after initiation of
enteral feeding.
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Despite the current consensus that early enteral feeding is
beneficial [85,86], the clinical evidence is largely drawn
from subset analyses of randomized controlled trials [87],
which did not demonstrate an overall outcome benefit, but
did show a reduction in specific complications. The possi-
bility that unidentified complications are increased in other
subsets cannot be discounted in view of the equivocal
overall outcome. There may exist a subset of patients in
whom the increased metabolic demands incurred by
active absorption of nutrients and increased motility result
in critical ischaemia and infarction. Case reports of small-
bowel necrosis after jejunal feeding offer support for this
idea [88]. It is interesting to speculate whether this group
could be identified by tonometry, perhaps in combination
with a test of gastric functional response. Good experi-
mental support for this idea is provided in a canine model
in which the entire vascular supply to the jejunoileum was
isolated [19]. Decreased SMA flow during nutrient deliv-
ery only to the jejunum resulted in increased mucosal per-
fusion at that level (as measured by laser Doppler
flowmetry and reflectance spectrophotometry). However,
concomitantly, perfusion to the distal ileum was reduced.
Thus, a redistribution of mesenteric blood occurred, or
‘intramesenteric steal’ as coined by the authors.

Exercise
In contrast to feeding, acute exercise is associated with
large increases in cardiac and active skeletal muscle blood
flows, but reduced blood flow to skin, kidneys and organs
perfused by the splanchnic circulation [89]. Using SMA
and coeliac artery duplex ultrasound, a 50% reduction in
the hepatosplenic and a 25–40% reduction in the mesen-
teric blood flow were demonstrated [90,91]. Simultaneous
indocyanine green dye elimination measurements were

consistent with the duplex data [90]. Results from studies
using gastric tonometry also support the concept of a
decrease in gastrointestinal perfusion occurring with
exercise. Oarsmen subjected to 30 min of maximal exercise
all had a significantly reduced gastric pHi, and this was
proportionally greater than the reduction in arterial pH [92].
We have produced similar results using bicycle ergometer
as an exercise challenge (unpublished data) (Fig. 5).

Reduction in splanchnic blood flow occurs in proportion to
relative exercise intensity. Low-intensity exercise (heart rate
90 beats/min) reduces splanchnic blood flow [93],
whereas strenuous exercise can result in clinically signifi-
cant gut ischaemia [94]. Increased sympathetic nervous
system outflow appears to be the primary mediator of
reduced blood flows to the splanchnic vasculature [95].
However, angiotensin II receptor antagonists increase
blood flow throughout the gut during exercise [96], and the
vasoconstrictors endothelin [48] and vasopressin probably
also make important vasoconstrictive contributions [97].

Human and animal studies have shown that splanchnic
blood flow is reduced less from resting levels during acute
exercise after programmed endurance exercise training.
The mechanisms that are involved in these adaptations
produced by such training include reductions in sympa-
thetic nervous system outflow, plasma angiotensin II and
vasopressin concentrations, which result in less splanch-
nic and renal vasoconstriction [97].

An excellent illustration of how important adaptive
splanchnic circulatory changes are during normal function
is provided by studies that examine how splanchnic circu-
latory changes during digestion are affected by exercise.
In healthy adults, exercise performed during the digestion
phase does not affect the intestinal hyperaemia seen due
to increased splanchnic flow. Using this knowledge has
helped to provide a strategy for avoiding postprandial
hypotension in elderly patients, an important clinical
problem given its estimated high incidence (8% of synco-
pal episodes) and strong association with increased inci-
dence of falls, syncope, new coronary events, new strokes
and total mortality at long-term follow up [98]. As pre-
dicted from our knowledge of splanchnic circulation
during feeding, acute exercise should ameliorate the
pooling of splanchnic blood during feeding, and hence
reduce postprandial hypotension. Indeed, in nursing home
residents with postprandial hypotension, postprandial
walking transiently increased cardiac output, but orthosta-
tic hypotension or falls did not occur [99].

Critical care
How does normal homeostasis of gut perfusion alter in
high-risk surgery or critical care diseases? Adequate
splanchnic perfusion is seriously challenged during the
commonly encountered critical care scenarios of circulatory
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Figure 5

Gastric–arterial CO2 (PgCO2–PaCO2) gap before and after exercise to
high oxygen consumption (VO2). Data from Chieverley-Williams S,
Hurley R, Cox M, McCorkell S, Grocott MPW, Goldstone J and Mythen
MG (unpublished data).
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shock and septic shock (like) states, but for rather different
underlying reasons. Of course, clinically these two scenar-
ios also often overlap in a dynamic manner, and therefore
many ICU scenarios are likely to be considerably more com-
plicated than the models discussed here. Unless stated oth-
erwise, all studies quoted were conducted in animals.

Circulatory shock
In contrast to sepsis, circulatory shock causes splanchnic
hypoperfusion with no initial change in splanchnic oxygen
consumption, regardless of whether the aetiology is
cardiac or acute hypovolaemia. By diverting blood supply
mediated by sympathetic adrenergic stimulation [100],
both the liver (which can redistribute an additional 1 l of
blood to the systemic circulation under cardiovascular
stress) and the gut are an efficient means of ensuring that
vital organs are perfused during acute hypovolaemia
[101,102], illustrating much the same general principle as
that of exercise. Gastric tonometry during induced short-
term hypovolaemia in healthy volunteers demonstrated a
reduced gastric pHi and this resolved with resuscitation
[63]. Interestingly, this was the only significant clinical indi-
cator of hypovolaemia, with heart rate, blood pressure and
peripheral perfusion showing no change after a 20–25%
blood volume venesection. Although simulated [103] and
actual hypovolaemia [101] in healthy human volunteers
showed that splanchnic vasoconstriction exists beyond the
period of restoration of normal systemic haemodynamics
after apparently adequate fluid resuscitation, the impor-
tance of the duration of such insults remains unclear. The
question remains as to the cost the gut incurs as a result of
sustained redistribution, or extreme hypoperfusion.

Furthermore, there is some evidence that intriguingly sug-
gests that splanchnic hypoperfusion may actually be the
result of, or at least exacerbated by, the combination of the
neural response to injury plus haemorrhage, rather than
hypovolaemia alone [104]. The degree of haemorrhage is
increased in the presence of afferent nerve stimulation
[105]. Whether afferent nerve stimulation in these animal
studies simulates the pain/stress response and/or modu-
lates central cardiovascular and baroreflexes [106]
requires further investigation. It is interesting, however, to
consider the obvious clinical correlate of this idea, in which
neural blockade by local nerve block has been shown to
reduce blood loss [107] and epidural blockade to improve
lower limb graft survival [108]. However, thoracic epidural
analgesia during major vascular surgery does not improve
splanchnic perfusion, as monitored by gastric and sigmoid
colon tonometry [109]. Laboratory studies indicate that the
site and spread of epidural block are critical, with thoracic
sympathetic blockade causing either no change in splanch-
nic perfusion [110] or increased splanchnic venodilatation,
whereas lumbar blockade increases splanchnic sympa-
thetic outflow and hence vasoconstriction, probably via the
baroreceptor reflex [111].

At the local and cellular levels, the complex interplay
between those factors described above in determining
normal vascular tone probably plays the key role in deter-
mining whether the response to hypoperfusion is sus-
tained. The splanchnic circulation certainly has important
humorally mediated differences in response to hypoperfu-
sion compared with the systemic circulation. Both vaso-
pressin and angiotensin II have markedly greater effect in
the mesenteric bed than elsewhere. In particular,
angiotensin II is believed to play a crucial role in mediating
intense splanchnic vasoconstriction. This appears to be
regardless of whether the underlying aetiology is cardio-
genic or haemorrhagic [112]. Splanchnic vasoconstriction
is not abolished by ablation of the α-adrenergic sympa-
thetic response [113] or mesenteric arterial denervation
[114]. Nephrectomy [115], angiotensin-converting
enzyme (ACE) [112,115] and specific angiotensin II
receptor inhibition [116,117] prevent splanchnic vasocon-
striction. Furthermore, direct infusion of angiotensin II in
rats [118] and angiotensin I in humans causes splanchnic
vasoconstriction, which is again reversed by ACE inhibi-
tion [119]. No clinical studies have been able to show a
similar effect of ACE inhibitors on splanchnic perfusion.
Splanchnic perfusion as determined by gastric tonometery
was not altered by enalaprilat in adults [120] or captopril
in infants [121] after cardiac surgery, although a small
study of trauma patients [122] did show a benefit. As
alluded to above, the mechanisms(s) that underlie such
acute changes may be very different from those that are
involved in chronic adaptation to low-flow states. In
patients with biventricular cardiac failure, ACE inhibitors
have no effect on splanchnic blood flow [123]. 

Vasopressin also plays an important role in producing the
vasoconstriction that is seen in haemorrhage [113,124],
even at relatively low levels of hypovolaemia with sympa-
thetic blockade [125]. Antagonism of vasopressin results
in higher SMA blood flow during haemorrhage [124].
Experimental models of hypovolaemia in humans, induced
by head-up tilt, lower body negative pressure or epidural,
show marked plasma vasopressin increases, but temporally
these occur only after renin–angiotensin activation [126].
β-Blockade, which has been shown to reduce myocardial
ischaemia and improve perioperative and postoperative
outcome [127], elevates vasopressin levels in both
euvolaemic and hypovolaemic rats [128]. Clonidine, which
has also been shown to reduce myocardial ischaemia peri-
operatively [129], prevents sympathetic-mediated splanch-
nic vasoconstriction [130], including in humans [131].
Given that the splanchnic perfusion is the last to be
restored after adequate fluid resuscitation, cellular changes
induced by hypoperfusion that outlast the period of insult
may well be the key step in perpetuating mucosal gut
damage, persistent gut dysfunction and the generation of a
systemic inflammatory response. The importance of reper-
fusion injury in the gut is reviewed elsewhere [132].
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Sepsis/systemic inflammatory response syndrome
The hallmark of the human splanchnic circulation in
sepsis/SIRS is increased total hepatosplanchnic blood
flow [133–135], with higher splanchnic oxygen extraction
[136] and consumption [137]. The effect on mesenteric
blood flow per se is less clear [138]. However, oxygen
consumption, delivery and extraction ratio may also
depend on the duration of the sepsis state, as indicated
by an endotoxin model. Oxygen consumption and delivery
(but not oxygen extraction ratio) in the small intestine
increased early in sepsis, only to decrease 20 h after the
onset of sepsis [139]. A confounding factor in that study
was the likely lack of fluid resuscitation, resulting in a
haematocrit rise that may well be deleterious to the
splanchnic microcirculation.

‘Cytopathic hypoxia’ causes this increase in hepato-
splanchnic blood flow during sepsis, and many possible
cellular mechanisms have been postulated [140,141].
Whether generated by initial hypoperfusion, trauma or
even direct endotoxaemic damage [142], the resultant
panendothelial injury that alters endothelial-derived func-
tions generates and perpetuates an inflammatory
response [143].

One problem in building an overall picture of the patho-
physiology of sepsis/SIRS is the variety of methods that
are employed in generating the sepsis-like response in
laboratory models. These differences are probably impor-
tant, particularly in interpreting the role and modulation of
the splanchnic vasculature. Indeed, many endotoxin-medi-
ated models of sepsis show decreased mesenteric perfu-
sion, in contrast to models in which live bacterial
innoculation results in the hyperdynamic response.
However, in vitro, both Escherichia coli haemolysin and
endotoxin models of sepsis produce abnormal capillary
blood flow distribution, with decreased perfused capillar-
ies [144], with evidence of impaired tissue oxygenation
indicated by an increase in the mucosal–arterial Pco2 gap,
despite the maintenance of mesenteric oxygen delivery
[145]. Furthermore, relatively increased haemoglobin con-
centration values and oedema formation occurred, sug-
gesting postcapillary vasoconstriction and capillary
leakage. This attractive model [145] serves to illustrate the
probable microvascular changes that are induced by
sepsis, which are supported by current understanding of
the splanchnic microvasculature [53].

Both animal and human studies show that norepinephrine,
NO [146], endothelin [147] and angiotensin II [148] levels
are markedly elevated in sepsis/SIRS. In addition, other
vasoactive mediators such as vasoactive intestinal peptide
[149], eicosanoids, platelet-activating factor and bradykinin
have been implicated, but, despite successful modulation of
these factors in animal models of sepsis, results in humans
are disappointing [150]. In particular, NO is a key element in

generating the septic response [151,152]. However, non-
specific inhibition of NO in humans on a large scale did not
improve outcome (unpublished data). NO inhibition
reverses hypotension, but cardiac output is reduced and the
overall effect on organ perfusion is unclear [153]. This is
despite the often impressive (but also inconsistent) effects
of NO inhibitors on reversing systemic hypotension and
splanchnic hypoperfusion in many bacterial and endotoxin
models of sepsis [154–156]. This mirrors the finding that
blockade of NO synthase or gene deletion of NO synthase
can exacerbate intestinal inflammation in experimental
models, due to the indiscriminate inhibition of both inducible
and constitutive NO [157,158]. The effect of timing of these
interventions on restoring splanchnic perfusion seems
important [159], given that experimental intestinal dysfunc-
tion results in an early (within 20 min) [160], severe
decrease in endothelium-derived NO [161]. In contrast to
the scenario of decreased NO, greater NO production is
thought be responsible for decreased norepinephrine-medi-
ated vasopressor activity during septic shock [162].

In septic patients, the greatest severity of disease has
been correlated to the highest concentration of endothe-
lin-1 [163], although the mechanism involved in the
increase of endothelin-1 concentration during sepsis is
largely unknown. Oldner et al [164] have shown that
bosentan (a nonpeptide endothelin [ET]A and ETB recep-
tor antagonist) restores both systemic and gut oxygen in a
porcine endotoxic model of sepsis. In this model, gut
oxygen consumption increased despite the profound
reduction in gut oxygen delivery. Restoration of splanchnic
oxygen delivery in response to bosentan treatment was
not associated with an increase in oxygen consumption,
suggesting that oxygen consumption was not dependent
on oxygen delivery in the gut. However, that study con-
trasts with others conducted over longer periods of time in
that, although splanchnic perfusion per se was not investi-
gated, endothelin antagonists exacerbated endotoxic
mediated hypotension [165] and increased mortality
[166]. As illustrated by quantative assessments of NO and
vasopressin during prolonged exposure to endotoxin or
bacteria, cellular function may be profoundly altered,
thereby producing a markedly different, and therefore
incomparable, picture to the early response.

Given the marked increase also seen in angiotensin II,
there is interesting, albeit limited, evidence that both vaso-
pressin and angiotensin may induce endothelin release
from in vitro endothelial cells [167]. In addition, ACE
inhibitors potentiate forearm vasculature dilatation induced
by infusion of acetylcholine in healthy human volunteers
[168]. Although vasopressin has little effect in normal
humans, its role in sepsis is complex. The effect on
splanchnic perfusion of the large initial rise and subse-
quent rapid decline in plasma vasopressin seen in animal
models is not known. Finally, impaired autonomic function
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in sepsis [169], if present, has a potentially important,
deleterious influence on splanchnic perfusion. The effects
of inotropes and vasopressors on gastrointestinal perfu-
sion are complex and tonometry-derived results are often
not consistent with results obtained using other tech-
niques or laboratory models. This area has been well
covered in a recent review [170].

Can improvement in gastrointestinal perfusion
improve outcome?
That the majority of studies using tonometry predict
outcome is certainly striking. This is all the more impressive
given the inability of the commonly measured physiological
variables (cardiac output and oxygen delivery excepted) to
predict outcome. However, to date there is little convincing
evidence that gastric tonometry-driven therapeutic inter-
vention can alter outcome. An early study conducted in
patients newly admitted to an ICU [8] demonstrated that
the application of a protocol designed to increase oxygen
delivery in response to an abnormal gastric pHi improved
outcome in those with a normal pHi on admission, but had
no effect on those who already had an abnormal pHi.

Commencement of corrective therapy in the already criti-
cally ill patient, by definition after a major insult, is consid-
ered by many to be equivalent to shutting the stable door
after the horse has bolted; otherwise stated, prevention of
(or rapid response to) an abnormal pHi (before or early in
the course of the insult) may be much more effective than
attempting to treat an established abnormal pHi. In
cardiac surgical patients intraoperative oesophageal
Doppler optimization of stroke volume reduced the inci-
dence of an abnormal gastric pHi when compared with
standard fluid management [6]. Whether this algorithm
would improve outcome if instituted only in response to
abnormal pHi is unknown. Intervention in response to an
abnormal pHi that occurs intraoperatively in patients
undergoing elective infrarenal aortic aneurysm repair did
not improve outcome [171]. The treatment protocol in this
study was somewhat different, however, and was not
demonstrated to improve pHi. The hypothesis that pHi-
guided therapy can improve outcome was therefore not
tested. One complex study that combined optimization of
oxygen delivery and tonometry guidance [172] suggested
that monitoring and reacting to abnormal gut perfusion
produced greater benefit than that obtained by optimizing
oxygen delivery alone. More recently, a large randomized
controlled trial of patients recruited on ICU admission
used additional fluid therapy and dobutamine in response
to a low pHi, and failed to demonstrate any outcome dif-
ference between control and protocol groups [173]. Once
again the treatment algorithm was ineffective at improving
pHi and the therapy was instituted after the insult. An ade-
quately powered intraoperative study with an effective
treatment algorithm is awaited to answer this important
clinical question definitively.

Conclusion
Current physiological understanding of splanchnic perfu-
sion suggests a key role for the splanchnic circulation in
the regulation of cardiovascular homeostasis. Gastro-
intestinal perfusion is often compromised early relative to
other vascular beds in situations including critical illness,
major surgery and exercise, all of which are characterized
by increased demands on the circulation to maintain
tissue oxygen delivery. Perhaps more importantly, this rela-
tive hypoperfusion often outlasts the period of the hypo-
volaemic insult or low-flow state. The relationship between
gastric tonometry and gastrointestinal perfusion is
complex. However, this is the only currently available clini-
cally practical monitor that we have. The ability of pHi to
predict outcome has repeatedly been demonstrated. CO2
gap, now the accepted variable, has not yet been conclu-
sively demonstrated to have the same predictive ability.
Convincing data that demonstrate the ability of tonometry-
guided therapy to improve outcome remains elusive.

The striking association between outcome and gastric pHi
provides an important clue to the pathophysiology of criti-
cal illness. Greater understanding of the complex physio-
logical basis of gastrointestinal perfusion during both
health and disease will hopefully open up further potential
therapeutic avenues.
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