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Abstract

Introduction Infusing arginine vasopressin (AVP) in vasodilatory
shock usually decreases cardiac output and thus systemic
oxygen transport. It is still a matter of debate whether this
vasoconstriction impedes visceral organ blood flow and thereby
causes organ dysfunction and injury. Therefore, we tested the
hypothesis whether low-dose AVP is safe with respect to liver,
kidney, and heart function and organ injury during resuscitated
septic shock.

Methods After intraperitoneal inoculation of autologous feces,
24 anesthetized, mechanically ventilated, and instrumented pigs
were randomly assigned to noradrenaline alone (increments of
0.05 μg/kg/min until maximal heart rate of 160 beats/min; n =
12) or AVP (1 to 5 ng/kg/min; supplemented by noradrenaline if
the maximal AVP dosage failed to maintain mean blood
pressure; n = 12) to treat sepsis-associated hypotension.
Parameters of systemic and regional hemodynamics (ultrasound
flow probes on the portal vein and hepatic artery), oxygen
transport, metabolism (endogenous glucose production and

whole body glucose oxidation derived from blood glucose
isotope and expiratory 13CO2/12CO2 enrichment during
1,2,3,4,5,6-13C6-glucose infusion), visceral organ function
(blood transaminase activities, bilirubin and creatinine
concentrations, creatinine clearance, fractional Na+ excretion),
nitric oxide (exhaled NO and blood nitrate + nitrite levels) and
cytokine production (interleukin-6 and tumor necrosis factor-α
blood levels), and myocardial function (left ventricular dp/dtmax
and dp/dtmin) and injury (troponin I blood levels) were measured
before and 12, 18, and 24 hours after peritonitis induction.
Immediate post mortem liver and kidney biopsies were analysed
for histomorphology (hematoxylin eosin staining) and apoptosis
(TUNEL staining).
Results AVP decreased heart rate and cardiac output without
otherwise affecting heart function and significantly decreased
troponin I blood levels. AVP increased the rate of direct, aerobic
glucose oxidation and reduced hyperlactatemia, which
coincided with less severe kidney dysfunction and liver injury,
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ALAT: alanine aminotransferase; ASAT: asparatate aminotransferase; AVP: arginine vasopressin; CO2: carbon dioxide; dp/dtmax: maximal systolic con-
traction; dp/dtmin: maximal diastolic relaxation; FADH2: reduced flavine adenine dinucleotide; FiO2: fraction of inspired oxygen; H&E: hematoxylin and 
eosin; I/E: inspiratory-to-expiratory; IL-6: interleukin-6; NADH: reduced nicotineamide adenine dinucleotide; NO2

-+NO3
-: nitrate+nitrite; O2: oxygen; 

PaO2: partial pressure of arterial oxygen; PaCO2: partial pressure of arterial carbon dioxide; PEEP: positive end-expiratory pressure; τ: diastolic relax-
ation time constant; TNFα: tumor necrosis factor-α; TUNEL: terminal deoxynucleotidyltransferase-mediated nick-end labeling assay; VASST: vaso-
pressin and septic shock trial.
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attenuated systemic inflammation, and decreased kidney tubular
apoptosis.
Conclusions During well-resuscitated septic shock low-dose
AVP appears to be safe with respect to myocardial function and

heart injury and reduces kidney and liver damage. It remains to
be elucidated whether this is due to the treatment per se and/or
to the decreased exogenous catecholamine requirements.

Introduction
Infusing arginine vasopressin (AVP) in vasodilatory septic
shock is usually accompanied by a decrease in cardiac output
and systemic oxygen (O2) transport. It is still a matter of debate
whether this vasoconstriction impedes visceral organ blood
flow and thereby causes organ dysfunction [1-5]. In fact, con-
troversial data have been reported in experimental [6-19] and
clinical studies [20-22]. The vasopressin-induced vasocon-
striction is also associated with reduced coronary flow, but
again data are equivocal [23-27], most likely because of the
variable impact of coronary flow and perfusion pressure [27].
Consequently, the use of vasopressin is still cautioned in
patients with heart and/or peripheral vascular disease [2,3,5],
and the multicenter Vasopressin and Septic Shock Trial
(VASST) explicitly excluded patients with cardiogenic shock,
ischemic heart disease, congestive heart failure, and
mesenteric ischemia [27].

Given this controversy, we tested the hypothesis whether low-
dose AVP infusion (supplemented with noradrenaline) is safe
with respect to liver, kidney, and heart function in a clinically
relevant porcine model of fecal peritonitis-induced septic
shock [28]. AVP was compared with noradrenaline, and the
two drugs were titrated to maintain comparable blood pres-
sure.

Materials and methods
Animal preparation, measurements, and calculations
The study protocol was approved by the University Animal
Care Committee and the Federal Authorities for Animal
Research (Regierungspräsidium Tübingen, Germany, Reg.-Nr
III/15). Anesthesia, surgical instrumentation, measurements
have been described in detail previously [28]. Systemic, pul-
monary, and hepatic (ultrasound flow probes on the portal vein
and the hepatic artery) hemodynamics and gas exchange
(calorimetric O2 uptake and carbon dioxide (CO2) production,
arterial, portal, hepatic, and mixed venous blood gases and oxi-
metry), intrathoracic blood volume, extravascular lung water
and indocyanine-green plasma disappearance rate (thermal-
green dye double indicator dilution), blood glucose, lactate,
pyruvate, bilirubin, creatinine, troponin I, nitrate+nitrite (NO2

-

+NO3
-; chemoluminescence), TNFα, and IL-6 concentrations,

as well as the alanine aminotransferase (ALAT) and aspartate
aminotransferase (ASAT) activities were determined as
described previously [28]. The bilirubin, creatinine, troponin I,
IL-6, TNF-α and NO2

-+NO3
- concentrations and the ALAT and

ASAT activities are normalized per gram of plasma protein to
correct for dilution by intravenous fluids [28]. Endogenous glu-

cose production and direct, aerobic glucose oxidation were
derived from the rate of appearance of stable, non-radioac-
tively labeled 1,2,3,4,5,6-13C6-glucose and the mixed expira-
tory 13CO2, respectively, during continuous intravenous
isotope infusion, after gas chromatography-mass spectrome-
try assessment of plasma and non-dispersive infrared spec-
trometry measurement of expiratory gas isotope enrichment
[28]. Left ventricular function was evaluated using a pressure
tip catheter (Millar Mikro-Tip®, Millar Instruments, Houston, TX,
USA) that allowed measuring maximal systolic contraction
(dp/dtmax) and diastolic relaxation (dp/dtmin), as well as the fre-
quency-independent relaxation time (τ).

Immediate postmortem liver, kidney, and heart biopsies were
evaluated for histomorphologic changes (H&E staining) and
the number of apoptotic nuclei (terminal deoxynucleotidyl-
transferase-mediated nick-end labeling-assay (TUNEL) stain-
ing) [28]. Evidence of apoptosis was accepted only if nuclear
staining was considered TUNEL positive, the scores reported
representing the number of positive nuclear stainings. Slides
were evaluated by a pathologist (AS) blinded for the group
assignment.

Experimental protocol
Body temperature was kept between 37 and 39°C, that is ±
1°C of the pre-peritonitis value, with heating pads or cooling.
Ventilator settings were [28]: tidal volume 8 mL/kg, positive
end expiratory pressure (PEEP) 10 cmH2O, inspiratory-to-
expiratory (I/E) ratio 1:1.5, respiratory rate adjusted to partial
pressure of arterial carbon dioxide (PaCO2) 35 to 45 mmHg
(but maximum 40 mmHg/min), peak airway pressure less than
40 cmH2O, fraction of inspired oxygen (FiO2) 0.3 (thereafter
adjusted to maintain arterial hemoglobin O2 saturation >
90%). If partial pressure of arterial oxygen (PaO2)/FiO2 less
than 300 mmHg or less than 200 mmHg, I/E ratio was
increased to 1:1 and PEEP to 12 or 15 cmH2O, respectively.
Lactated Ringer's solution was infused as maintenance fluid
(7.5 mL/kg/h), and normoglycemia (4 to 6 mmol/L) was
achieved with continuous intravenous glucose as needed. Fol-
lowing instrumentation, an eight-hour recovery period, and
baseline data collection, peritonitis was induced by intraperito-
neal instillation of 1.0 g/kg autologous feces incubated in 100
mL 0.9% saline for 12 hours at 38°C [28]. Hydroxyethyl-starch
(15 mL/kg/h, 10 mL/kg/h if central venous or pulmonary artery
occlusion pressure more than 18 mmHg and titrated to main-
tain intrathoracic blood volume at 25 to 30 mL/kg [28])
allowed the maintainence of a hyperdynamic circulation. When
mean blood pressure fell by more than 10% below the pre-
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peritonitis levels over more than 15 minutes, animals randomly
received either noradrenaline (controls: n = 12, 4 males, 8
females, body weight 47 kg, range 38 to 61 kg), titrated in
increments of 0.05 μg/kg/min every five minutes until the pre-
peritonitis values was reached, or AVP (n = 12, 5 males, 7
females, body weight 46 kg, range 36 to 54 kg), titrated in
increments of 1 ng/kg/min every 30 minutes. According to our
previous experience [28] we aimed to maintain the pre-perito-
nitis blood pressure, because, to the best of our knowledge,
no data are available on the blood pressure necessary to main-
tain visceral organ perfusion in septic swine. To avoid tachy-
cardia-induced myocardial ischemia the noradrenaline infusion
rate was not further increased if heart rate was 160 beats/min
or above. The AVP dose was limited to a maximum infusion
rate of 5 ng/kg/min and supplemented by noradrenaline if it
failed to maintain blood pressure alone. After additional data
collection at 12, 18, and 24 hours of peritonitis, animals were
euthanized under deep anesthesia.

Statistical analysis
Data are presented as median (quartiles) unless otherwise
stated. After exclusion of normal distribution using the Kol-
mogorov-Smirnoff-test, differences within groups were ana-
lyzed using a Friedmann analysis of variance on ranks and a
subsequent Dunn's test with Bonferroni correction. As our pri-
mary hypothesis had been that AVP was safe with respect to
liver and heart function in our model, intergroup differences for
blood ASAT and ALAT activities as well as bilirubin and tro-
ponin I levels were tested using a Mann-Whitney rank sum test
with Bonferroni adjustment for multiple comparisons. Because
of the multiple statistical testing of the numerous variables
measured, all other intergroup comparisons have to be inter-
preted in a secondary, exploratory, and hypotheses-generat-
ing, rather than confirmatory, manner.

Results
One animal in the control group died following data collection
at 18 hours, and thus statistical analysis at 24 hours com-
prises 23 animals. Colloid resuscitation was identical in the
two groups (controls: 15 (14 to 15), AVP: 14 (13 to 14) mL/
kg/h). AVP-treated animals did not require any additional
noradrenaline during the first 12 hours of the experiment, and,
consequently, the median duration and rate of the noradrena-
line infusion were significantly lower (duration: 111 (0 to 282)
versus 752 (531 to 935) minutes; infusion rate: 0.06 (0.00 to
0.10) versus 0.61 (0.33 to 0.72) μg/kg/min).

Tables 1 and 2 and Figures 1 and 2 summarize the data on
systemic hemodynamics and left heart function (Table 1), as
well as O2 exchange, acid-base status, and metabolism (Table
2). AVP-treated animals presented with significantly lower
heart rate and cardiac output. In contrast to the AVP group,
maintenance of mean blood pressure was only achieved in
one-third of the control animals, because the noradrenaline
infusion rates were not further increased if tachycardia more

than 160 beats/min occurred. Nevertheless, albeit mean
blood pressure was significantly lower at 18 and 24 hours of
peritonitis, one control animal only developed hypotension
with a mean blood pressure less than 60 mmHg (Figure 1).
None of the other parameters of systemic and pulmonary
hemodynamics showed any significant intergroup difference.
Although dp/dtmax was significantly lower in the AVP-treated
animals, dp/dtmin and the diastolic relaxation time τ were com-
parable in the two groups. Troponin I levels progressively
increased in the control animals and were significantly higher
than in the AVP group at the end of the experiment (Figure 2).
Control animals showed a significantly higher systemic O2
transport as well as O2 uptake and CO2 production, whereas
arterial blood gas tensions were nearly identical. The progres-
sive fall of arterial pH and base excess was attenuated in the
AVP-treated group (P = 0.069 and P = 0.053, respectively, at
24 hours). Although the rate of whole body glucose oxidation
increased comparably, the progressive rise of endogenous
glucose production rate was less pronounced in the AVP ani-
mals (P = 0.053, P = 0.061, and P = 0.053 at 12, 18, and 24
hours of peritonitis). Consequently, the directly oxidized frac-
tion of the glucose released was significantly higher in the AVP
group, which coincided with significantly lower arterial lactate
levels at 18 and 24 hours.

Table 3 and Figures 3, 4, 5 and 6 summarize the parameters
of visceral organ blood flow, O2 kinetics, acid-base status, and
function. Except for a lower portal venous flow (P = 0.053 at
24 hours), liver hemodynamics and O2 exchange did not sig-
nificantly differ between the two groups. Nevertheless, AVP
attenuated the portal and hepatic venous acidosis (Table 3)
and blunted the otherwise significant rise in serum transami-
nase activities and bilirubin levels (Figures 3, 4 and 5). AVP
prevented the time-dependent fall in urine output so that diu-
resis was significantly higher between 12 and 24 hours (Table
3). Renal dysfunction with reduced creatinine clearance
(Table 3) and increased blood creatinine levels (Figure 6) was
less severe, while fractional Na+ excretion was significantly
higher in the AVP-treated animals (Table 3).

Table 4 shows the parameters of the inflammatory response.
Although the increase in blood NO2

-+NO3
- and TNFα levels

was comparable, AVP was associated with significantly lower
IL-6 concentrations and expired nitric oxide (NO).

Histomorphologic evaluation showed some non-specific sub-
capsular inflammatory cell infiltration and a few biliary tract
concrements in the liver, and tubular swelling in the kidney;
however, this was without any intergroup difference, and no
pathologic findings at all in the myocardium. Although TUNEL-
positive nuclei were absent or rare (without intergroup differ-
ence) in the heart and the liver, respectively, AVP-treated ani-
mals showed less TUNEL-positive renal tubular nuclei (3 (3 to
9) versus 11 (5 to 15), respectively, P = 0.061).
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Discussion
The aim of the present study was to test the hypothesis
whether low-dose AVP infusion is safe for heart and visceral
organ function in a clinically relevant, resuscitated, and hyper-
dynamic porcine model of fecal peritonitis-induced septic
shock. AVP supplemented with noradrenaline was compared
with noradrenaline alone, which were titrated to maintain com-
parable blood pressure. The key findings were that: AVP
decreased heart rate and cardiac output without affecting
myocardial relaxation, and significantly decreased troponin I
blood levels; increased the rate of direct, aerobic glucose oxi-
dation, and reduced hyperlactatemia; attenuated kidney dys-
function as well as liver injury, which coincided with less
severe systemic inflammatory response.

In our experiment, left ventricular dp/dtmax was significantly
lower in the AVP group, whereas dp/dtmin remained
unchanged. Thus our experiment seems to confirm negative

inotrope properties of AVP in isolated hearts [23,24] and
endotoxin-challenged rabbits [25]. As first derivatives of pres-
sure, dp/dtmax and dp/dtmin crucially depend on heart rate. In
the mentioned studies, however, heart rate was not affected at
all [23,24] or decreased by less than 10% only [25]. Further-
more, an unresuscitated model with endotoxin-induced car-
diac dysfunction [25] or AVP decreased coronary blood flow
below baseline levels [23,24]. Clearly, as we did not measure
coronary blood flow, we cannot exclude a vasoconstriction-
related reduction in coronary perfusion. Nevertheless, it is
unlikely that AVP caused myocardial ischemia: troponin I levels
progressively increased in the control animals only and were
significantly higher than in the AVP group at the end of the
experiment. Our findings are in sharp contrast to data by
Müller and colleagues, who recently reported unchanged
systolic and compromised diastolic heart function during
incremental AVP infusion in swine with transient myocardial
ischemia [18]. These authors also studied a hypodynamic

Table 1

Parameters of systemic hemodynamics and cardiac function in the control (n = 12, n = 11 at 24 hours of peritonitis) and AVP (n = 12) 
groups

Before peritonitis 12 hours peritonitis 18 hours peritonitis 24 hours peritonitis

Heart rate Control 92 (87 to 104) 128 (105 to 153)b 155 (129 to 160)b 158 (154 to 160)b

(beats/min) AVP 85 (75 to 95) 96 (76 to 102)a 87 (74 to 105)a 103 (84 to 112)a, b

Cardiac output Control 105 (95 to 119) 122 (101 to 129) 155 (125 to 167)b 131 (117 to 183)b

(mL/kg/min) AVP 105 (95 to 107) 95 (84 to 105) 97 (71 to 122)a 104 (82 to 136)

Mean arterial Control 98 (93 to 105) 95 (82 to 108) 89 (72 to 91)b 78 (63 to 89)b

pressure (mmHg) AVP 95 (90 to 104) 96 (90 to 111) 99 (91 to 104)a 98 (90 to 102)a

Mean pulmonary artery Control 27 (26 to 30) 37 (34 to 42)b 36 (32 to 41)b 39 (34 to 44)b

pressure (mmHg) AVP 28 (26 to 30) 37 (31 to 43)b 37 (36 to 40)b 40 (37 to 44)b

Central venous Control 12 (12 to 14) 14 (12 to 16) 15 (13 to 18)b 19 (14 to 21)b

pressure (mmHg) AVP 12 (12 to 13) 16 (14 to 17)b 16 (14 to 17)b 17 (16 to 19)b

Pulmonary artery occlusion Control 14 (13 to 16) 16 (14 to 17) 16 (13 to 18) 17 (14 to 19)b

pressure (mmHg) AVP 13 (12 to 15) 16 (13 to 16) 17 (15 to 18)b 18 (18 to 19)b

Stroke volume Control 1.2 (11 to 1.4) 0.9 (0.9 to 1.0)b 1.0 (0.9 to 1.1) 0.9 (0.8 to 1.2)

(mL/kg) AVP 1.2 (1.0 to 1.3) 1.0 (0.9 to 1.3)b 1.0 (0.9 to 1.2) 1.0 (0.9 to 1.1)

Intrathoracic blood volume Control 27 (22 to 35) 25 (23 to 26) 28 (26 to 31) 27 (26 to 32)

(mL/kg) AVP 26 (21 to 29) 24 (21 to 28) 29 (24 to 31) 21 (20 to 28)

DP/dtmax Control 1355 (1246 to 1415) 1774 (1663 to 1980) 2011 (1291 to 2215) 1532 (1119 to 1979)

(mmHg/sec) AVP 1137 (957 to 1410) 793 (758 to 844)a 893 (739 to 1310) 915 (730 to 1404)a

DP/dtmin Control -1296 (-1329 to -1134) -1444 (-1556 to -1093) -1421 (-1709 to -948) -1243 (-1493 to -1038)

(mmHg/sec) AVP -1321 (-1476 to -1128) -1065 (-1114 to -890) -1202 (-1311 to -930) -1109 (-1473 to -887)b

τ Control 22 (20 to 22) 25 (17 to 26) 23 (18 to 26) 20 (18 to 25)

(ms) AVP 22 (20 to 25) 19 (15 to 20) 21 (16 to 23) 19 (15 to 25)b

All data are median (quartiles). a P < 0.05 between norepinephrine- and AVP-treated animals; b P < 0.05 within groups versus before peritonitis.
AVP = arginine vasopressin; dp/dtmax = maximal systolic contraction; dp/dtmin = maximal diastolic relaxation.
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model characterized by a reduced cardiac output resulting
from myocardial dysfunction, while we investigated fluid-resus-
citated animals with a sustained increase in cardiac output. In
addition, Müller and colleagues infused AVP alone, while we
combined AVP with noradrenaline. In fact, the current rationale
of AVP use comprises a supplemental infusion, targeted to
restore vasopressin levels, simultaneously with catecho-
lamines rather than AVP alone [29]. It remains open whether
the results reported by Müller and colleagues were due to the
AVP-related vasoconstriction, that is, afterload-dependent
and/or related to coronary hypoperfusion, or to a genuine myo-
cardial effect. This issue, however, is critical in the discussion
on cardiac effects of AVP: 'cardiac efficiency', that is, the prod-

uct of left ventricular pressure times heart rate normalized for
myocardial O2 consumption, was well maintained under con-
stant flow conditions [26]. Finally, the significantly reduced
noradrenaline requirements may have contributed to the less
severe myocardial injury [30]. In the control group, maintaining
blood pressure at pre-peritonitis levels necessitated high
noradrenaline infusion rates, which were reported to cause
myocardial injury due to increased workload [31] and reduced
metabolic efficiency resulting from enhanced fatty acid oxida-
tion [32].

Despite the lower portal venous flow infusing AVP did not have
any detrimental effect on liver O2 exchange and, moreover,

Table 2

Parameters of systemic gas exchange, metabolism and acid-base status in the control (n = 12, n = 11 at 24 hours of peritonitis) and 
AVP (n = 12) groups

Before peritonitis 12 hours peritonitis 18 hours peritonitis 24 hours peritonitis

Arterial PO2 Control 166 (160 to 179) 144 (124 to 153)b 106 (93 to 121)b 87 (80 to 114)b

(mmHg) AVP 163 (154 to 179) 144 (128 to 170)b 124 (96 to 150)b 96 (84 to 138)b

Arterial PCO2 Control 37 (35 to 39) 41 (40 to 44)b 41 (39 to 45)b 44 (39 to 46)b

(mmHg) AVP 36 (34 to 40) 40 (39 to 43)b 41 (38 to 44)b 42 (39 to 45)b

Extravascular lung water Control 4.4 (3.0 to 6.0) 4.8 (1.5 to 7.0) 5.8 (1.4 to 8.6) 7.4 (5.5 to 8.6)b

(mL/kg) AVP 3.3 (2.7 to 5.0) 7.4 (1.8 to 9.6)b 9.0 (1.1 to 11.0)b 5.9 (3.4 to 8.4)b

Systemic O2 delivery Control 10 (9 to 11) 14 (11 to 18)b 19 (16 to 23)b 17 (12 to 21)b

(mL/kg/min) AVP 11 (10 to 12) 11 (11 to 13) 12 (8 to 15)a 13 (10 to 16)

Systemic O2 uptake Control 4.9 (4.0 to 5.3) 4.4 (3.7 to 5.7) 6.0 (4.5 to 7.2)b 6.0 (5.3 to 6.8)b

(mL/kg/min) AVP 4.7 (4.2 to 4.8) 4.6 (3.9 to 4.7)b 4.7 (4.2 to 4.9)a 4.7 (4.2 to 5.6)a

Systemic CO2 production Control 3.1 (2.7 to 3.5) 3.5 (3.0 to 4.1)b 4.1 (3.7 to 4.5)b 4.4 (4.0 to 4.8)b

(mL/kg/min) AVP 3.0 (2.7 to 3.4) 3.2 (2.9 to 3.6) 3.4 (3.1 to 3.6)a, b 3.5 (3.2 to 3.8)a, b

Endogenous glucose Control 2.7 (2.4 to 3.4) 5.6 (4.5 to 6.3)b 7.2 (5.6 to 8.4)b 7.7 (7.1 to 10.2)b

production (mg/kg/min) AVP 2.5 (2.2 to 2.9) 4.5 (4.0 to 4.8)b 4.9 (4.7 to 6.8)b 6.6 (5.0 to 7.5)b

Systemic glucose Control 1.9 (1.4 to 2.9) 3.2 (2.1 to 3.4)b 3.8 (3.1 to 4.3)b 3.8 (3.4 to 4.5)b

oxidation (mg/kg/min) AVP 1.9 (1.6 to 2.4) 2.9 (2.5 to 3.8)b 3.7 (2.9 to 3.9)b 3.8 (3.2 to 4.2)b

Glucose oxidation/production ratio (%) Control 74 (50 to 104) 54 (51 to 62)b 52 (50 to 56) 49 (44 to 55)b

AVP 79 (60 to 93) 64 (57 to 72)a 62 (57 to 64)a, b 57 (53 to 65)a, b

Arterial lactate Control 0.9 (0.8 to 1.0) 1.1 (1.0 to 1.3)b 2.0 (1.3 to 3.6)b 2.3 (1.8 to 4.1)b

(mmol/L) AVP 0.9 (0.8 to 1.0) 0.9 (0.8 to 1.1) 1.2 (1.0 to 1.5)a, b 1.5 (1.3 to 1.9)a, b

Arterial Control 8 (7 to 9) 12 (11 to 13) 13 (12 to 16)a 15 (13 to 17)a

lactate/pyruvate ratio AVP 9 (8 to 10) 12 (11 to 13) 12 (11 to 13)a 14 (13 to 15)a

Arterial pH Control 7.56 (7.55 to 7.59) 7.50 (7.45 to 7.53)b 7.47 (7.44 to 7.49)b 7.44 (7.38 to 7.45)b

AVP 7.54 (7.49 to 7.57) 7.51 (7.49 to 7.52)b 7.49 (7.45 to 7.53)b 7.49 (7.44 to 7.51)b

Arterial base excess Control 10.3 (8.8 to 12.3) 9.9 (7.0 to 11.3) 6.0 (3.4 to 8.0)b 4.1 (-0.2 to 6.2)b

(mmol/L) AVP 9.3 (7.9 to 11.0) 9.6 (8.3 to 11.1) 8.9 (6.1 to 9.4) 7.1 (3.9 to 10.7)

All data are median (quartiles). a P < 0.05 between norepinephrine- and AVP-treated animals; b P < 0.05 within groups versus before peritonitis.
AVP = arginine vasopressin; PCO2 = partial pressure of carbon dioxide; PO2 = partial pressure of oxygen.
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was associated with less severe hepatic venous metabolic aci-
dosis and attenuated liver injury. Furthermore, AVP infusion
resulted in significantly less severe kidney dysfunction. Con-
troversial effects were reported on the effects of AVP infusion
on visceral organ blood flow and function during large animal
sepsis and septic shock: although AVP decreased mesenteric
arterial and portal venous flow during porcine and ovine bac-
terial sepsis [13,15,16] or endotoxemia [6,7,10], other studies
found unchanged hepato-splanchnic perfusion when vaso-
pressin or terlipressin were infused during hyperdynamic por-
cine endotoxemia and ovine fecal peritonitis [8,10,19]. The
effect of AVP on the kidney macrocirculation was even more

heterogenous, in as much decreased [10], unchanged
[13,16], and even increased [7] renal blood flow were
reported. It should be emphasized that a fall in regional blood
flow below baseline levels associated with signs of organ
ischemia, for example, regional venous acidosis and/or
increased lactate concentrations, only occurred in hypody-
namic models with a sustained decrease in cardiac output
[7,10] and/or with AVP doses higher than currently recom-
mended [15,16]. In fact, Sun and colleagues demonstrated
during ovine fecal peritonitis that both low-dose vasopressin
alone and in combination with noradrenaline were associated
with less severe hyperlactatemia and tissue acidosis than with
noradrenaline alone, which ultimately resulted in improved sur-
vival [8]. In endotoxic swine infusing low doses of the AVP ana-
logue terlipressin also caused hyperlactatemia, which,
however, did not originate from the hepato-splanchnic system
and was even associated with attenuated portal and hepatic
venous metabolic acidosis [33].

AVP did not affect creatinine clearance, and fractional Na+

excretion was significantly increased. Therefore, it could be
argued that AVP deteriorated or, at best, did not influence kid-
ney function [34], which would be in contrast with previous
reports of improved renal function in experimental models
[9,13,35] and clinical investigations [22,36]. It should be
noted, however, that AVP significantly attenuated the other-
wise progressive increase in creatinine blood levels. Despite
its value as a marker of kidney injury, blood creatinine concen-
trations may not be closely correlated with creatinine clear-
ance in the pig, because in this species some basal tubular
creatinine secretion may be present [37]. Moreover, in the
context of the significantly higher urine output, the lower blood
creatinine levels, and the attenuated tubular TUNEL staining,
the significantly higher fractional Na+ excretion probably mir-
rors the physiologic response to AVP [38] rather than deterio-
rated tubular function: intravenous AVP increased fractional
Na+ elimination both under healthy [39,40] and pathologic
conditions [35,41]. Finally, the reduced noradrenaline require-
ments may have also contributed to the higher fractional Na+

excretion: noradrenaline per se was demonstrated to reduce
Na+ elimination [42,43].

Several mechanisms may explain the AVP-related less severe
organ dysfunction and tissue injury. First, AVP was associated
with significantly lower IL-6 levels, that is, an attenuated sys-
temic inflammatory response, which is in good agreement with
the anti-inflammatory properties of AVP reported in endotoxic
mice [44]. In addition, infusing AVP reduced the amount of
exhaled NO, which confirms our own data during terlipressin
infusion in endotoxic swine [33], as well as the inhibition of the
inducible isoform of the NO synthase in endotoxic rats with bil-
iary cirrhosis [45]. In addition to anti-inflammatory properties of
vasopressin per se, the lower noradrenaline doses may have
attenuated the inflammatory response: catecholamines may
mimick [46] and/or enhance [47,48] the inflammatory effects

Figure 1

Mean blood pressure in the control and AVP animalsMean blood pressure in the control and AVP animals. Control = dotted 
line; n = 12, n = 11 from 20 to 24 hours. Arginine vasopressin (AVP) 
animals = straight line; n = 12. Data are median (quartiles) and repre-
sent a minute-to-minute average based on continuous recording.

Figure 2

Blood troponin I levels in the control and AVP animalsBlood troponin I levels in the control and AVP animals. control = open 
whiskers; n = 12, n = 11 at 24 hours. Arginine vasopressin (AVP) ani-
mals = grey whiskers; n = 12. Data are median (quartiles, range). # P < 
0.05 within groups versus before peritonitis; § P < 0.05 between nore-
pinephrine- and AVP-treated animals.
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Table 3

Parameters of visceral organ (liver, kidney) hemodynamics, acid-base status and organ function in the control (n = 12, n = 11 at 24 
hours of peritonitis) and AVP (n = 12) groups

Before peritonitis 12 hours peritonitis 18 hours peritonitis 24 hours peritonitis

Portal vein flow (mL/kg/min) Control 18 (15 to 22) 29 (21 to 31)b 29 (24 to 34)b 26 (24 to 30)b

AVP 18 (16 to 20) 24 (20 to 31)b 22 (16 to 27) 20 (16 to 24)

Hepatic artery flow (mL/kg/min) Control 1.7 (0.4 to 2.1) 1.4 (0.9 to 2.9) 1.6 (1.3 to 3.5) 2.1 (1.1 to 3.6)b

AVP 0.6 (0.2 to 1.6) 1.6 (0.2 to 3.2)b 1.9 (0.3 to 3.3)b 3.0 (0.3 to 5.5)b

Hepatic O2 delivery
(mL/kg/min)

Control 1.0 (0.9 to 1.5) 2.9 (2.5 to 3.7)b 3.0 (2.0 to 3.5)b 2.6 (1.8 to 3.1)b

AVP 1.2 (1.0 to 1.5) 2.5 (1.9 to 3.0)b 2.2 (1.7 to 3.0)b 2.3 (1.4 to 2.7)b

Portal vein O2 saturation (%) Control 58 (55 to 64) 78 (76 to 81)b 77 (71 to 79)b 72 (67 to 74)b

AVP 60 (55 to 63) 78 (68 to 83)b 72 (65 to 75)b 69 (63 to 71)b

Hepatic vein O2 saturation (%) Control
AVP

25 (24 to 72) 63 (54 to 65)b 58 (52 to 65)b 53 (44 to 56)b

30 (20 to 55) 66 (50 to 70)b 54 (42 to 61)b 55 (50 to 58)b

Portal drained viscera O2 extraction (%) Control
AVP

40 (37 to 46) 21 (18 to 24)b 21 (18 to 25)b 27 (24 to 34)b

43 (37 to 44) 22 (17 to 35)b 22 (19 to 31)b 30 (25 to 34)b

Hepatic O2 uptake Control 0.6 (0.4 to 0.8) 0.6 (0.4 to 0.9) 0.7 (0.5 to 1.1) 0.6 (0.4 to 0.8)

(mL/kg/min) AVP 0.6 (0.5 to 0.9) 0.8 (0.5 to 0.9) 0.7 (0.4 to 1.0) 0.5 (0.3 to 0.7)

Portal vein Control 10 (9 to 12) 14 (12 to 15) 15 (13 to 17) 16 (13 to 18)a

lactate/pruvate ratio AVP 11 (10 to 12) 13 (11 to 15) 14 (13 to 15) 15 (13 to 17)a

Hepatic vein Control 9 (8 to 10) 12 (10 to 15) 13 (12 to 15) 14 (12 to 18)a

lactate/pruvate ratio AVP 8 (7 to 12) 12 (10 to 15) 11 (10 to 16) 13 (11 to 16)a

Portal vein pH Control 7.49 (7.46 to 7.52) 7.46 (7.42 to 7.48) 7.41 (7.38 to 7.45)b 7.37 (7.33 to 7.42)b

AVP 7.48 (7.43 to 7.51) 7.47 (7.44 to 7.49)b 7.44 (7.39 to 7.47)b 7.42 (7.37 to 7.43)b

Hepatic vein pH Control 7.49 (7.47 to 7.53) 7.48 (7.43 to 7.49) 7.43 (7.40 to 7.46)b 7.39 (7.33 to 7.44)b

AVP 7.49 (7.44 to 7.54) 7.47 (7.44 to 7.50) 7.43 (7.39 to 7.48)b 7.44 (7.40 to 7.46)

Portal vein base excess
(mmol/L)

Control 10.8 (9.5 to 12.5) 10.2 (8.1 to 11.2)b 6.5 (3.0 to 8.2)b 4.8 (0.1 to 6.2)b

AVP 9.8 (7.8 to 12.4) 9.2 (7.3 to 10.4) 9.5 (6.0 to 10.6) 8.9 (3.0 to 11.0)a

Hepatic vein base excess (mmol/L) Control 12.6 (10.5 to 14.2) 11.1 (7.9 to 12.2)b 7.6 (5.1 to 8.9)b 5.8 (0.5 to 7.4)b

AVP 11.6 (10.1 to 14.8) 10.5 (8.5 to 12.2)b 9.8 (4.5 to 11.1)b 9.0 (3.8 to 11.8)b

ICG plasma Control 20 (19 to 23) 17 (13 to 31) 14 (10 to 34) 13 (8 to 22)b

disappearance rate (%/min) AVP 15 (11 to 19) 14 (10 to 18) 13 (8 to 15) 12 (12 to 15)

Urine output
(mL/kg/h)

Control 5.4 (4.1 to 7.2) 3.2 (2.3 to 4.8)b

AVP 6.7 (5.9 to 8.0) 5.6 (4.6 to 8.6)a

Creatinine clearance
(mL/min)

Control 80 (67 to 88) 64 (35 to 85)c

AVP 79 (60 to 98) 61 (44 to 73)c

Fractional Na+ excretion (%) Control
AVP

5.6 (4.8 to 7.7) 3.0 (2.5 to 5.1)

8.3 (6.4 to 10.0)a 9.5 (7.2 to 10.7)a

Data on urine flow, creatinine clearance, and fractional Na+ excretion refer to the first and second half of the experiment, respectively. All data are 
median (quartiles). a P < 0.05 between norepinephrine- and AVP-treated animals; b P < 0.05 within groups versus before peritonitis.
AVP = arginine vasopressin; ICG = indocyanine-green dye.
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of endotoxin. Second, AVP was affiliated with a smaller rise in
the endogenous glucose production rate, while glucose oxida-
tion was identical. Consequently, the percentage of direct,
aerobic glucose oxidation as a fraction of endogenous glu-
cose release was significantly increased. Such a switch in fuel
utilization to the preferential use of glucose improves the yield
of oxidative phosphorylation: the ratio of ATP synthesis to O2
consumption is higher for glycolysis than for β-oxidation,
because reduced nicotineamide adenine dinucleotide

(NADH) as an electron donor provides three coupling sites
rather than two only provided by reduced flavine adenine dinu-
cleotide (FADH2) [49]. Again, it remains open whether this
effect is due to AVP per se and/or the reduced catecholamine
requirements: Noradrenaline increases endogenous glucose
release [50], and Regueria and colleagues showed improved
liver mitochondrial function during noradrenaline administra-
tion in endotoxic swine [51], whereas other authors empha-
sized the catecholamine-induced derangement of metabolic
efficiency [52].

Figure 3

Blood ASAT activities as levels in the control and AVP animalsBlood ASAT activities as levels in the control and AVP animals. Control 
= open whiskers; n = 12, n = 11 at 24 hours. Arginine vasopressin 
(AVP) animals = grey whiskers, n = 12. Data are median (quartiles, 
range). # P < 0.05 within groups versus before peritonitis; § P < 0.05 
between norepinephrine- and AVP-treated animals. ASAT = asparatate 
aminotransferase.

Figure 4

Blood ALAT levels in the control and AVP animalsBlood ALAT levels in the control and AVP animals. Control = open 
whiskers; n = 12, n = 11 at 24 hours. Arginine vasopressin (AVP) ani-
mals = grey whiskers; n = 12. Data are median (quartiles, range). # P < 
0.05 within groups versus before peritonitis; § P < 0.05 between nore-
pinephrine- and AVP-treated animals. ALAT = alanine aminotrans-
ferase.

Figure 5

Blood bilirubin levels in the control and AVP animalsBlood bilirubin levels in the control and AVP animals. Control = open 
whiskers; n = 12, n = 11 at 24 hours. Arginine vasopressin (AVP) ani-
mals = grey whiskers; n = 12. Data are median (quartiles, range). # P < 
0.05 within groups versus before peritonitis; § P < 0.05 between nore-
pinephrine- and AVP-treated animals.

Figure 6

Blood creatinine levels in the control and AVP animalsBlood creatinine levels in the control and AVP animals. Control = open 
whiskers; n = 12, n = 11 at 24 hours. Arginine vasopressin (AVP) ani-
mals = grey whiskers; n = 12. Data are median (quartiles, range). # P < 
0.05 within groups versus before peritonitis; § P < 0.05 between nore-
pinephrine- and AVP-treated animals.
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Limitations of the study

Mean blood pressure was significantly lower in the control
group during the last six hours of the experiment due to the
resuscitation protocol imposing a maximum noradrenaline infu-
sion rate at heart rates of 160 beats/min or higher. Hence, any
beneficial effect of AVP on organ function and/or damage
could be referred to a higher perfusion pressure [53]. We
think, however, that the lower blood pressure was unlikely to
induce visceral organ ischemia: one control animal only
became hypotensive with a mean blood pressure below the
range reported to be associated with unchanged parameters
of visceral organ perfusion and function in patients with septic
shock [54,55]. Moreover, organ blood flow and O2 delivery
was always well maintained and portal drained viscera O2
extraction, hepatic O2 uptake, regional venous O2 saturation,
and lactate/pyruvate ratios were identical.

We used hydroxyethyl-starch for fluid resuscitation, because
in swine this colloid caused less pulmonary dysfunction than
Ringer's lactate [56] and attenuated capillary leakage [57].
Although we cannot definitely exclude that a hydroxyethyl-
starch overload contributed at least in part to the kidney dys-
function [58], this issue most likely did not assume any impor-
tance for the difference between the AVP and control animals:
both groups received identical colloid resuscitation.

Finally, we investigated young and otherwise healthy pigs dur-
ing the first 24 hours of sepsis, which precludes any conclu-
sion on the safety of AVP infusion with respect to organ injury
during prolonged administration and/or with underlying
ischemic heart disease, congestive heart failure, or peripheral
vascular disease.

Conclusions
In our clinically relevant model of fecal peritonitis-induced sep-
tic shock, low-dose AVP infusion supplemented with

noradrenaline proved to be safe with respect to myocardial
and visceral organ function and tissue integrity. Nevertheless,
as we observed a reduced dp/dtmax in young animals without
underlying heart disease, the use of AVP should be cautioned
in patients with heart failure and/or cardiac ischemia, such as
in the recent VASST [27]. It remains to be elucidated whether
the attenuated inflammatory response and improved energy
metabolism during AVP was due to the treatment per se and/
or to the reduced noradrenaline requirements needed to
achieve the hemodynamic targets.
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Table 4
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Before peritonitis 12 hours peritonitis 18 hours peritonitis 24 hours peritonitis
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AVP 1 (0 to 3) 83 (51 to 150)b 216 (119 to 365)a, b 354 (140 to 677)a, b

All data are median (quartiles). a P < 0.05 between norepinephrine- and AVP-treated animals; b P < 0.05 within groups versus before peritonitis. 
AVP = arginine vasopressin; NO = nitric oxide.
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