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Abstract

Introduction: The purpose of this study was to re-evaluate the findings of a smaller cohort study on the functional
definition and characteristics of acute traumatic coagulopathy (ATC). We also aimed to identify the threshold values for
the most accurate identification of ATC and prediction of massive transfusion (MT) using rotational thromboelastometry
(ROTEM) assays.

Methods: In this prospective international multicentre cohort study, adult trauma patients who met the local criteria
for full trauma team activation from four major trauma centres were included. Blood was collected on arrival to the
emergency department and analyzed with laboratory international normalized ratio (INR), fibrinogen concentration and
two ROTEM assays (EXTEM and FIBTEM). ATC was defined as laboratory INR >1.2. Transfusion requirements of 210 units
of packed red blood cells within 24 hours were defined as MT. Performance of the tests were evaluated by receiver
operating characteristic curves, and calculation of area under the curve (AUC). Optimal cutoff points were estimated
based on Youden index.

Results: In total, 808 patients were included in the study. Among the ROTEM parameters, the largest AUCs were found
for the clot amplitude (CA) 5 value in both the EXTEM and FIBTEM assays. EXTEM CA5 threshold value of <37 mm had
a detection rate of 66.3% for ATC. An EXTEM CAS5 threshold value of <40 mm predicted MT in 72.7%. FIBTEM CA5
threshold value of <8 mm detected ATC in 67.5%, and a FIBTEM CA5 threshold value <9 mm predicted MT in 77.5%.
Fibrinogen concentration <1.6 g/L detected ATC in 73.6% and a fibrinogen concentration <1.90 g/L predicted MT in
77.8%. Patients with either an EXTEM or FIBTEM CA5 below the optimum detection threshold for ATC received
significantly more packed red blood cells and plasma.

Conclusions: This study confirms previous findings of ROTEM CA5 as a valid marker for ATC and predictor for MT.
With optimum threshold for EXTEM CA5 <40 mm and FIBTEM CA5 <9 mm, sensitivity is 72.7% and 77.5% respectively.
Future investigations should evaluate the role of repeated viscoelastic testing in guiding haemostatic resuscitation in
trauma.
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Introduction

Haemorrhagic shock following injury has been shown to
induce coagulopathy [1-3]. Acute traumatic coagulopathy
(ATC) may potentiate bleeding and is associated with
multiple organ failure and increased mortality [2,4,5].
Early detection of coagulopathy is important in order
to counteract the haemostatic disturbances. Standard
tests such as prothrombin time (PT), activated partial
thromboplastin time (aPTT), fibrinogen concentration
and platelet count are widely used to guide resuscitation
in trauma patients [6,7]. However, the conventional
coagulation tests (CCTs) focus on selected aspects of
coagulation, which may not be appropriate for ATC
[8]. Full blood viscoelastic haemostatic assays (VHA),
such as rotational thromboelastometry (ROTEM) and
thromboelastography (TEG), may provide a more complete
assessment of haemostasis and as point-of-care devices
should be able to provide results in a more clinically useful
time frame for targeted therapy [9-11].

In a previous prospective cohort study, the tissue factor
(TF)-activated ROTEM assay (EXTEM) was used to
characterize ATC and the need for transfusions [12]. This
study suggested that coagulopathy could be identified
using the clot amplitude five minutes after the initiation of
clot build-up (CA5). Thus, the CA5 value potentially may
be used as a diagnostic tool for detecting ATC and the
need for massive transfusion.

The objective of our study was to re-evaluate the
previous findings in a larger international multi-centre
setting. Specifically, we aimed to identify the threshold
values that most accurately identify ATC and the need for
massive transfusion, using the EXTEM assay, as well as
the platelet-inhibited FIBTEM assay.

Methods

Design and patient selection

This multi-centre observational cohort study was
conducted as a part of the Activation of Coagulation
and Inflammation in Trauma study (ACIT) 3, led by
the International Trauma Research Network (INTRN)
collaboration. Patients were non-consecutively recruited
at four major trauma centers in three different countries:
UK, Denmark and Norway. The inclusion period was
from January 2007 to November 2011, thereby also
including a cohort previously studied [12]. Patients
18 years or older requiring full trauma team activa-
tion were eligible for inclusion. Patients who received
more than 2,000 mL of fluids before arrival or who arrived
in the emergency department (ED) more than two
hours from time of injury were excluded. Additional
exclusion criteria comprised patients who were preg-
nant, had known liver failure, bleeding disorders or
were taking oral anticoagulant medications other than
acetyl salicylic acid.
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Informed consent was obtained from participating
patients or their next of kin where appropriate. The
study was performed in accordance with local ethical
regulations and approved by local ethical authorities
as specified under acknowledgements.

Sampling techniques and measurements

Blood samples were collected within 20 minutes of
arrival in hospital. Samples for ROTEM and CCTs
were collected in citrated tubes, whereas samples for
blood gas analyses were collected in heparinized syringes
in accordance with local routines. ROTEM assays were
performed within one hour by dedicated study personnel
using the ROTEM Delta (TEM; TEM International,
Munich, Germany). The assays used were the EXTEM
assay, where the citrated sample is recalcified before
it is activated by TF, and the FIBTEM assay, where
the platelet inhibitor cytochalasin D was added for
platelet inhibition, to isolate the fibrin component of
the clot.

The clotting time (CT) of the ROTEM trace is the
time from initiation of the test to first detectable
rotational resistance. Clot formation time (CFT) is the
time from first detectable resistance to trace amplitude of
20 mm. The alpha angle is the angle of increase at the
point where 20 mm amplitude is reached. Maximum clot
firmness (MCF) is the maximum clot amplitude detected.
The clot amplitude (CA) after 5 (CA5) and 10 (CA10)
minutes were also recorded. Due to the fact that the
FIBTEM trace rarely reaches amplitude of 20 mm,
the CFT and alpha angle was omitted for the FIBTEM
assays in this study.

CCTs and blood gas analyses were performed with the
shortest possible delay. The CCTs included in this study
were PT, fibrinogen concentration and platelet count.
PT was converted to international normalized ratio (INR)
in accordance with the specific reagents and device
characteristics in the respective laboratories. Fibrinogen
was measured by the Clauss method [13].

Data collection and statistical analyses
Patient data on demographics, time of injury, pre-hospital
fluid administration and vital signs were collected
prospectively. The total amount of packed red blood
cell (PRBC) and plasma units required within the first
24 hours were recorded. Mechanism of injury and Injury
Severity Score (ISS) were retrieved from the respective
institutional trauma registries. ATC was defined as an INR
value >1.2, consistent with the previous study [12]. We
defined massive transfusion (MT) as the administration of
10 or more units of PRBC within 24 hours.

Groups with ATC and need for MT were compared to
normal groups by Student’s ¢ test or Mann-Whitney U test
as appropriate. Receiver operating characteristic (ROC)
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curves and area under the curve (AUC) were used to
compare test accuracy. Optimal threshold for best
sensitivity and specificity was defined using the Youden
index. One-way analysis of variance (ANOVA) was used
for detection of differences in transfusion requirements
between groups. Statistical calculations were made
using SPSS 21.0 (IBM Corp Armonk, NY, USA) and
MedCalc 3.0 (MedCalc Software, Ostende, Belgium).
A P value <0.05 was considered statistically significant.
Values are given as mean (standard deviation) unless
stated otherwise.

Results

A total of 808 patients were included in this study.
The patient cohort is described in Table 1. Massive
transfusion was required for 49 patients (6.1%) and
89 patients (11.0%) had ATC. All ROTEM parameters
and CCTs differed significantly between ATC and
non-ATC groups, as well as between MT and non-
MT groups (P <0.001). These differences were also
significant in the subgroup of patients presenting with
a BE< -5 mEq/L.

Test characteristics based on previously suggested
threshold values for INR (>1.2), CA5 (<35 mm), CT
(>94 seconds) and alpha angle (<65°) are presented in
Table 2. The detection rate for MT requirement was
found to be highest for INR and EXTEM CA5 with
51.1% and 45.5%, respectively.

Table 3 summarizes test performance measured by
AUC for ROTEM parameters and CCTs. All included
ROTEM parameters, fibrinogen concentration, INR and
platelet counts significantly predicted MT. The highest
ROTEM AUC values were found for EXTEM CA5 and
FIBTEM CAS5, both in detecting ATC and predicting
MT requirements. These AUC values did however not

Table 1 Descriptive statistics for the study population
(n=2808)

All INR >1.2 MT
(n=2808) (n=89) (n=49)
Age 38 (28) 38 (29) 41 (33)
Male gender (%) 774 719 65.3
ISS 16 (20) 33 (22) 29 (16)
Penetrating injury (%) 175 17.1 12.24
Base excess (mEg/ml) —1.90 (4.90) -80 (87) -99(7.7)
1SS >15 (%) 525 89.2 936
Base excess < —5 (%) 195 63.5 787
INR >1.2 (%) 11.0 100 51.1
Any PRBC administered (%) 317 76.7 100
PRBC =10 administered (%) 6.1 279 100

Age, ISS and base excess are given as median (interquartile range). INR,
international normalized ratio; MT, massively transfused (>10 PRBC); ISS, Injury
Severity Score; PRBC: packed red blood cells.
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differ significantly from the AUC of the other ROTEM
parameters. AUC for fibrinogen concentration, on the other
hand, was significantly higher than any other ROTEM
parameter in detecting ATC.

The optimal threshold value for specificity and sensi-
tivity for EXTEM CA5 in detecting ATC was found to
be <37 mm, and in predicting MT <40 mm (Table 4).
The corresponding values for FIBTEM were <8 mm
and <9 mm, respectively. The optimal threshold for
fibrinogen concentration in detecting ATC was <1.61 g/L
and <1.90 g/L in predicting MT.

With the calculated optimal thresholds for MT,
detection rate with EXTEM CAS5 was 72.7%, for FIBTEM
CA5 77.5%, for fibrinogen concentration 77.8% and for
INR 70.2%.

The number of units PRBC and plasma transfused was
significantly higher in the groups with either EXTEM
CA5 or FIBTEM CA5 below the optimum threshold for
ATC detection as depicted in Figure 1.

Discussion

This study shows that the amplitude of the ROTEM
assay after five minutes (EXTEM CA5) detects ATC and
predicts the need for MT. The detection rate for MT of
45.5% was, however, lower in the current study compared
to the predictive values previously reported (71.4%) when
a threshold value of <35 mm was used [12]. When false
positive and false negative test results were weighted
equally, the threshold for best sensitivity and specificity
(<40 mm) was slightly higher in our data set than the
threshold suggested by Davenport et al. With a threshold
of <40 mm we found the detection rate for EXTEM CA5
to be 72.7%, comparable to the previous findings. This
was, however, associated with an increased false positive
rate in our data set (31.3% versus 15.3%). The reasons for
the differences between our results and the results of
the single-centre study by Davenport et al. may be due to
the differences in number of massively transfused patients
(11 vs. 49).

From the ROC curve analyses it appears that the
platelet-inhibited assay (FIBTEM) may increase the test
accuracy with respect to the need for MT. This is in
accordance with the findings reported by Schochl et al.
[14]. In a retrospective single-centre study of 323 trauma
patients, they found that the FIBTEM assay had a better
overall test accuracy than the EXTEM assay. They
identified the FIBTEM MCF as the parameter with the
largest AUC, with detection rate similar to that of FIBTEM
CA5 in our study. They identified an optimum threshold
of FIBTEM MCF of <7 mm, with a sensitivity of
77.5%. In their study, fibrinogen concentration also
had a large AUC, comparable to the best ROTEM
parameter, and a sensitivity of 84.2%, with a threshold
of 1.48 g/L.
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Table 2 Test characteristics in predicting massive transfusion (>10 units of packed red blood cells) based on previously

suggested threshold values [12]

Detection rate False positive rate PPV NPV
INR >1.2 51.1 (36.1-65.9) 838 (6.8-11.0) 273 (183-37.9) 96.7 (95.0-97.9)
CT >94 sec 289 (16.4-44.3) 88 (69-11.2) 16.5 (9.1-26.5) 95.5 (93.7-96.9)
CA5 <35 mm 455 (304-612) 16.1 (13.5-19.0) 144 (9.0-213) 96.3 (94.5-97.6)
Alpha angle <65° 372 (23.0-533) 122 (9.9-14.8) 15.1 (8.9-234) 96.0 (94.2-97.3)

PPV, positive predictive value; NPV, negative predictive value; INR, international normalized ratio; CT, clotting time; CA5, clotting amplitude after 5 minutes.

Excellent correlation has previously been demonstrated
between CA in platelet-inhibited ROTEM assays and
fibrinogen measured by the Clauss method [15-17] Low fi-
brinogen concentration has been closely linked to mortal-
ity and need for MT in a number of studies [4,18,19]. In a
study by Harr et al. [16] fibrinogen concentration was
closely correlated to the clot strength (R*=0.87) in an
assay similar to the FIBTEM assay (TEG Functional
Fibrinogen assay). Adding fibrinogen in vitro increased
both clot strength and the relative contribution to clot
strength of fibrinogen compared to platelets. This
finding is supported by animal studies, case reports
and observational studies in humans demonstrating a
reversal of ATC by fibrinogen concentrate [20-23]. The
crucial role of fibrinogen in traumatic coagulopathy,
supported by these findings, may to some extent explain

Table 3 ROC analyses of parameters predicting acute
traumatic coagulopathy (ATC) and massive transfusion (MT)

ATC MT

AUC (95% Cl) AUC (95% ClI)
EXTEM CT (s) 0.73 (0.70-0.76) 0.68 (0.65-0.71)
EXTEM CA5 (mm) 0.79 (0.76-0.81) 0.75 (0.72-0.78)
EXTEM CAT10 (mm) 0.78 (0.75-0.81) 0.75 (0.72-0.78)
EXTEM CFT (s) 0.77 (0.74-0.80) 0.73 (0.70-0.76)
EXTEM Alpha (°) 0.78 (0.75-0.81) 0.73 (0.69-0-76)
EXTEM MCF (mm) 073 (0.70-0.76) 0.70 (0.67-0.73)
FIBTEM CT (5) 0.72 (0.68-0.75) 065 (0.62-0.69)
FIBTEM CA5 (mm) 0.80 (0.77-0.83) 0.78 (0.74-0.81)
FIBTEM CA10 (mm) 0.79 (0.76-0.82) 0.76 (0.73-0.79)
FIBTEM MCF (mm) 0.77 (0.74-0.80) 0.76 (0.73-0.79)
Fibrinogen concentration 087" (0.84-0.89) 0.81 (0.78-0.83)
INR N/A N/A 0.82 (0.79-0.84)
Platelet count 0.74 (0.70-0.77) 0.70 (0.66-0.73)

ATC, acute traumatic coagulopathy defined as INR >1.2. MT, massive
transfusion defined as 10 or more packed red blood cells. All AUCs values are
statistically different from 0.5 with a P <0.001. "AUC is significantly larger than
the AUC of the ROTEM parameters (P =0.002 for difference to FIBTEM CA5).
ROC, receiver operating characteristics; AUC, area under the curve; CT, clotting
time; CA5, clot amplitude after 5 minutes; CA10, clot amplitude after

10 minutes; CFT, clot formation time; MCF, maximum clot firmness; INR,
international normalized ratio.

why the FIBTEM assay present better test characteristics
than the EXTEM assay in our study.

VHAs may benefit from several advantages compared
to CCTs. Multiple repeated measurements used to
evaluate the dynamic changes and to specifically direct
the mode of coagulation support, has been advocated
[24,25]. The ability to visualize the haemostatic process
in whole blood from initiation to fibrinolysis, contrasts
that of CCTs, which only assess isolated parts of the
coagulation in plasma. Traditionally, the turnaround
time for CCTs may be considered too long, and since
the introduction of VHAs in trauma management,
some researchers propose that the role of CCTs in
guiding transfusion therapy is marginalized [26,27].
However, it should be noted that based on the results
of several studies, INR [14,28], fibrinogen concentra-
tion [14], and haemoglobin concentration (or haem-
atocrit) [14,29] appear to be non-inferior to VHAs
when it comes to predicting MT from a single blood
sample on arrival. Readily available point-of-care testing
devices may, in the case of haemoglobin concentration
and INR, overcome the time delay usually associated
with the conventional laboratory analyses. The preci-
sion and feasibility of such diagnostics should be a
target for further studies.

Limitations of our study include the fact that few
patients required MT, and the confidence intervals of
the test characteristics are correspondingly wide. The
test results from ROTEM analyses were not blinded
to clinicians in all centres and may to some extent
have biased the results. In the case of such a bias this
would have favoured the test performance of VHAs
since they usually are available to clinicians faster
than the CCTs. A survivor bias in this study cannot
be excluded as some patients may have died before
receiving the required amount of transfusions. This
potential bias may have resulted in an underestimation of
the accuracy in predicting MT in our study. Our analyses
are based only on the first sample obtained shortly
after arrival in the ED. The value of repeated VHA
analyses to guide transfusion during the course of re-
suscitation was not evaluated in this study. Finally,
our study is not addressing the impact of ROTEM on
clinical outcomes.
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Table 4 Optimum thresholds and respective test accuracy parameters for predicting (a) acute traumatic coagulopathy
(ATC) defined as INR >1.2 and (b) massive transfusion (MT) (defined as >10 units of PRBC)

Test parameter Optimum threshold Detection rate False positive rate PPV NPV

(@

EXTEM CAS5 <37 (34-39) 66.3 (55.1-76.3) 18.8 (15.9-21.9) 299 (23.4-37.1) 952 (93.2-96.8)
FIBTEM CA5 <8 (5-8) 67.5 (55.9-77.8) 20.7 (17.7-239) 269 (20.8-33.8) 956 (93.5-97.1)
Fibrinogen <161 (1.36-1.9) 736 (63.0-824) 11.5 (9.2-14.) 45.1 (36.7-53.6) 96.3 (94.5-97.7)
Platelet count <199 (128-199) 61.7 (46.4-75.5) 299 (26.6-334) 11.9 (8.1-16.7) 96.5 (94.6-97.9)
(b)

EXTEM CA5 <40 (32-40) 727 (57.2-85.0) 313 (28.0-34.8) 12.2 (8.5-16.8) 97.7 (96.0-98.8)
FIBTEM CA5 <9 (6-9) 775 (61.5-89.2) 328 (29.4-36.4) 114 (7.9-15.8) 98.2 (96.6-99.2)
Fibrinogen <1.90 (1.39-2.18) 778 (62.9-88.8) 297 (26.4-30.1) 14.0 (9.9-189) 98.1 (96.5-99.1)
INR 21.13 (1.0-1.16) 702 (55.1-82.7) 19.0 (16.2-22.1) 19.2 (13.6-25.9) 97.7 (96.2-98.7)
Platelet count <174 (159-182) 528 (41.9-63.5) 14.8 (12.2-17.7) 322 (24.7-40.4) 93.1 (90.8-95.0)
INR, international normalized ratio; PRBC, packed red blood cells; PPV, positive predictive value; NPV, negative predictive value; CA5, clot amplitude after

5 minutes.

Conclusions studies should be directed at identifying the role of

In conclusion, this study confirms the previous finding
that the ROTEM CA5 value measured on arrival is a
valid marker for ATC and predicts MT requirements.
An EXTEM CA5 threshold value of <40 mm has a
detection rate of 72.7%, whereas a FIBTEM CA5
threshold value of <9 mm detects MT requirements
in 77.5% of cases. Fibrinogen concentration was sig-
nificantly better than ROTEM assays in predicting
ATC, and a fibrinogen concentration <1.90 g/L had a
detection rate of 77.8% for MT requirement. Future

repeated VHA measurements in guiding haemostatic
resuscitation in trauma.

Key messages

e The ROTEM assay is a valid predictor of
coagulopathy and MT.

e Optimal cutoff value for CA5 was found at
<40 mm for the EXTEM assay and <9 mm for
the FIBTEM assay.

Number of units transfused (mean and 95% CI)
|
-

=37 38-44 45-50 251
EXTEM CAS value

Figure 1 Units transfused grouped by EXTEM CA5 (left panel) and FIBTEM CAS5 (right panel). The difference between the number of
packed red blood cells (unbroken lines) and plasma units (dotted lines) in the group with CA5 below optimum threshold (€37 mm and <8 mm
respectively) and other groups is statistically significant. CA5, clot amplitude after 5 minutes.

T
=8 9-12 13-15 >15
FIBTEM CAS value
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e Using the optimal CA5 cutoff point, detection rate
for massive transfusion was 72.7% and 77.5% for
EXTEM and FIBTEM respectively.

e Test performance of fibrinogen concentration
measured by the Clauss method was comparable to
the best ROTEM parameters.
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