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Abstract

Background: Remote ischemic preconditioning (RIPC) is a promising approach to preventing acute kidney injury
(AKI), but its efficacy is controversial.

Methods: A systematic review of 30 randomized controlled trials was conducted to investigate the effects of RIPC
on the incidence and outcomes of AKI. Random effects model meta-analyses and meta-regressions were used to
generate summary estimates and explore sources of heterogeneity. The primary outcome was incidence of AKI and
hospital mortality.

Results: The total pooled incidence of AKI in the RIPC group was 11.5 %, significantly less than the 23.3 %
incidence in the control group (P = 0.009). Subgroup analyses indicated that RIPC significantly reduced the
incidence of AKI in the contrast-induced AKI (CI-AKI) subgroup from 13.5 % to 6.5 % (P = 0.000), but not in the
ischemia/reperfusion-induced AKI (IR-AKI) subgroup (from 29.5 % to 24.7 %, P = 0.173). Random effects meta-regression
indicated that RIPC tended to strengthen its renoprotective effect (q = 3.95, df = 1, P = 0.047) in these trials with a
higher percentage of diabetes mellitus. RIPC had no significant effect on the incidence of stages 1–3 AKI or renal
replacement therapy, change in serum creatinine and estimated glomerular filtration rate (eGFR), hospital or 30-day
mortality, or length of hospital stay. But RIPC significantly increased the minimum eGFR in the IR-AKI subgroup
(P = 0.006) compared with the control group. In addition, the length of ICU stay in the RIPC group was significantly
shorter than in the control group (2.6 vs 2.0 days, P = 0.003).

Conclusions: We found strong evidence to support the application of RIPC to prevent CI-AKI, but not IR-AKI.

Keywords: Acute kidney injury, Cardiac surgery, Remote ischemic preconditioning, Renal replacement therapy,
Percutaneous coronary intervention

Background
Acute kidney injury (AKI) is a common complication in
hospitalized patients, especially in the intensive care unit
(ICU). Approximately 30–60 % of critically ill patients
have AKI [1–3], while the incidence of AKI is about
21.6 % in hospitalized adults [4]. The mortality due to

AKI in the ICU can be as high as 60–70 % [5, 6], and in
the hospital approximately 20–40 % of patients with
AKI die, with mortality being higher in patients with
more severe AKI [7, 8]. Although various attempts have
been made to prevent or treat AKI, including renopro-
tective drugs [9] and renal replacement therapy (RRT)
[10], most of these efforts have yielded limited success.
AKI is still a great burden for patients with risk fac-
tors, such as old age, sepsis, hypovolaemia, chronic kid-
ney disease (CKD) and diabetes mellitus.
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Remote ischemic preconditioning (RIPC), a technique
in which brief episodes of ischemia/reperfusion (IR)
applied in distant tissues or organs render the organ re-
sistant to a subsequent sustained episode of ischemia
[11], was first proposed [12] and confirmed in the heart
[13]. Not only did RIPC have protective effects on the
heart, but the concept of RIPC was further extended to
reduce the incidence of AKI. RIPC may be a highly
appealing, nonpharmacological, practical approach to
protect the kidney. Although RIPC’s renoprotection has
been demonstrated in animal models [14] of ische-
mia/reperfusion-induced acute kidney injury (IR-AKI)
[15, 16] and contrast-induced acute kidney injury (CI-
AKI) [17], its protective effects in clinical settings are
still controversial. The authors of one recent meta-
analysis [18] concluded that RIPC provides cardiac
protection, but there is no evidence of renal protection in
patients undergoing cardiac surgery using cardiopulmo-
nary bypass (CPB). Other authors [19] demonstrated that
RIPC might be beneficial for the prevention of AKI
following cardiac and vascular interventions, but the
current evidence is not robust enough to make a
recommendation.
In the past year 2015 to 2016, more than ten random-

ized controlled trials (RCTs) [20–30] were published.
These RCTs were not included in previous meta-analyses,

and the effects of RIPC on AKI need to be reassessed.
However, there may be enough studies to conduct meta-
regression analyses to examine associations between effect
sizes of RIPC and variables that may influence the efficacy
of RIPC, such as comorbidities and surgical procedures.
AKI can have a variety of causes, and the effects of RIPC
on different cause-specific AKI may also vary. For these
reasons, we conducted a systematic review and meta-
analysis of RCTs to reassess the effects of RIPC on the in-
cidence and outcomes of AKI and to apply meta-
regression analyses of confounders associated with the
effects of RIPC on AKI.

Methods
Data sources
We performed a computerized search to identify relevant
published original studies (1993 to February 2016). The
year 1993 was selected as the starting point because it cor-
responds to the year in which the concept of RIPC was
first proposed. The Web of Science, PubMed, Cochrane
Library, and OVID databases were searched using medical
subject heading terms or keywords. The words searched
were “acute kidney injury,” “acute kidney failure,” “acute
kidney dysfunction,” “acute kidney insufficiency,” “acute
tubular necrosis,” “acute renal failure,” “acute renal in-
jury,” “acute renal dysfunction,” “acute renal insufficiency,”

Fig. 1 Flow of studies through the review process
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Fig. 2 Effects of remote ischemic preconditioning (RIPC) on the incidence of acute kidney injury (AKI). (a) Effects of RIPC on total AKI, ischemia/
reperfusion-induced AKI (IR-AKI) and contrast-induced AKI (CI-AKI). (b) Effects of RIPC on every stage of AKI. **P < 0.01

Fig. 3 Forest plot showing effects of remote ischemic preconditioning on incidence of acute kidney injury and subgroup analyses. IR-AKI ischemia/
reperfusion-induced acute kidney injury, CI-AKI contrast-induced acute kidney injury, RIPC remote ischemic preconditioning, RR risk ratio
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or “contrast induced nephropathy” and “ischemic precon-
ditioning” or “ischemic conditioning.” This search was not
limited to the English language or publication type.

Study selection
An initial eligibility screen of all retrieved titles and
abstracts was conducted, and only studies in which re-
searchers reported AKI were selected for further review.
The following inclusion criteria were used for final study
selection: (1) effects of RIPC on AKI were reported; (2)
the protocol was RIPC, not remote ischemic postcondi-
tioning or local ischemic conditioning; (3) clear defini-
tions of AKI stated; and (4) at least one of the following
outcomes of interest: (a) incidence of AKI, (b) serum
creatinine (SCr), or (c) estimated glomerular filtration
rate (eGFR) within 72 h after procedures. We restricted
the search to clinical RCTs. We excluded studies without
clear definitions of AKI or outcomes of interest as well
as experimental studies.

Data extraction and quality assessment
Two reviewers (HJC and LSP) independently examined
the studies, and disagreement was resolved by discussion.
Data extraction included year of publication, country of

origin, study design, sample size, patient characteristics
(age and sex), procedures, definitions of AKI, comorbidi-
ties, details of RIPC protocols, baseline SCr and eGFR,
CPB and cross-clamp time for cardiac surgery, and dose of
contrast medium. Our primary endpoint was the incidence
of AKI within 72 h after procedures. The secondary end-
points were incidence of AKI stages 1–3, incidence of RRT,
changes of SCr and eGFR within 72 h after procedures,
hospital or 30-day mortality, length of ICU stay, and length
of hospital stay. In this meta-analysis, we categorized the
AKI definitions and staging system according to a Kidney
Disease: Improving Global Outcomes (KDIGO)-equivalent
AKI definition, similarly to previous studies [4, 31]. The
study selection, data extraction, and reporting of results
were all based on the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses checklist [32]. The
quality of the studies was assessed independently by pairs
of two authors. The Jadad scale (score range 0–5, 5 = best
score) was used to quantify the quality of the trials [33].

Statistical analyses
Comprehensive Meta-Analysis version 2.0 software
(Biostat Inc, Englewood, NJ, USA) was used to per-
form the meta-analysis. Heterogeneity among study

Fig. 4 Meta-regression results of reduction of acute kidney injury (AKI) by remote ischemic preconditioning (RIPC). Meta-regression of age (a),
percentage of male (b), percentage of hypertension (c), percentage of diabetes mellitus (DM) (d), percentage of dyslipidemia (e), baseline estimated
glomerular filtration (eGFR) (f), cardiopulmonary bypass (CPB) time (g), cross-clamp time (h) and dose of contrast medium (i) on log risk ratios
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point estimates was assessed with the Q-statistic, and the
magnitude of heterogeneity being was evaluated with the I2

index. The random effects model was used for all analyses.
Pooled dichotomous data such as incidence of AKI and
hospital mortality were expressed as risk ratio (RR) with
95 % CI. Pooled continuous effect measures were expressed
as the standardized mean difference with 95 % CI.

Publication bias was assessed using funnel plot techniques
and the Egger regression test. The random effects meta-
regression analyses were performed to evaluate statistically
the effects of confounding factors on the renoprotection of
RIPC. The variables evaluated by meta-regression were age,
percentage of male subjects, percentage of comorbidities,
baseline of eGFR, CPB time, cross-clamp time, and dose of

a b

c d

e f

Fig. 5 Effects of remote ischemic preconditioning (RIPC) on outcomes of acute kidney injury (AKI). Effects of RIPC on maximum of serum
creatinine (Scr) (a), maximum increase of Scr (b) and minimum of estimated glomerular filtration (eGFR) (c) within 72 hours after procedures,
hospital or 30-day mortality (d), length of intensive care unit (ICU) (e) and hospital stay (f). IR-AKI ischemia/reperfusion-induced acute kidney
injury, CI-AKI contrast-induced acute kidney injury. *P < 0.05, **P < 0.01
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contrast medium. All tests of statistical inference reflect a
two-sided α of 0.05 or 0.01.

Results
Literature search
In the searches, we identified 1725 records, of which 556
were considered potentially relevant based on title and
abstract screening, and we obtained these as full-text
studies. There were 30 RCTs including 7244 patients

with a median of 96 (interquartile range [IQR]
71–200) patients per study who met our eligibility
criteria and were included in this systematic review
(Fig. 1). Agreement between investigators at the full-text
review stage was excellent, as indicated by a κ of 0.8.

Study and participant characteristics
Of the included 30 RCTs, one study [34] was available
only as an abstract and all others were reported in full-

Fig. 6 Forest plot showing effects of remote ischemic preconditioning on the change of serum creatinine within 72 h after procedures. IR-AKI
ischemia/reperfusion-induced acute kidney injury, CI-AKI contrast-induced acute kidney injury, RIPC remote ischemic preconditioning, SD
standard deviation, Std Diff standard difference
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length journal articles. Publication dates ranged from
2007 to 2016 (median 2014). Studies were conducted in
a wide range of countries. Twenty trials with an aggre-
gated 6077 patients undergoing cardiac or aortic surgery
were assigned to an IR-AKI subgroup, while 10 studies
with 1167 patients receiving contrast medium injection
were assigned to the CI-AKI subgroup. The proportion
of patients who were male ranged from 32.3 % to 92.7 %
(median 71.0 %, IQR 57.6–81.2 %), and the patients’ ages
ranged from 1 to 76 years (median 66 years, IQR 62–72
years). Additional file 1 shows these details in more
detail. Baseline SCr ranged from 33.5 to 143.6 μmol/L
(median 95.2 μmol/L, IQR 79.7–102.6 μmol/L), and
baseline eGFR ranged from 41.0 to 114.5 ml/min·1.73/m2

(median 77.8 ml/min·1.73/m2, IQR 51.3–93.2 ml/
min·1.73/m2). Additional file 2 contains data for the pro-
portions of common comorbidities such as hypertension,
diabetes mellitus (DM), dyslipidemia, and previous
myocardial infarction; CPB and cross-clamp time; the
dose of contrast medium; and definitions of AKI.
Overall study quality was good, with a mean Jadad
scale score of 3.9 of a possible 5 (median 4, IQR 3–5).

RIPC protocols
The RIPC methods used varied among studies. An in-
flatable tourniquet was used around the upper limbs in
22 studies , around the lower limbs in 5 studies, and
around both the upper and lower limbs in 1 study [30].
In two studies [35, 36], cross-clamping of the iliac arter-
ies was used. In the majority of studies, cuff pressure

was defined as the pressure either up to 200 mmHg or
50 mmHg higher than the systolic arterial pressure.
Total ischemic duration ranged from 15 to 30 minutes
(median 15, IQR 15–20). Additional file 3 shows these
data in more detail.

Data synthesis
Effects of RIPC on the incidence of AKI
Data regarding the incidence of AKI were available in 26
trials with an aggregated 7009 patients. The total pooled
incidence of AKI in the RIPC group was 11.5 % (95 %
CI 8.5–15.3), which was significantly lower than the
23.3 % (95 % CI 16.6–31.8) in the control group (RR
0.834, 95 % CI 0.728–0.955, P = 0.009). Nine studies with
an aggregated 2504 patients after cardiac surgery pro-
vided the incidence in every stage of AKI. The pooled
incidence rates were 17.5 % (95 % CI 11.6–25.5), 7.9 %
(95 % CI 4.1–14.7), and 4.2 % (95 % CI 2.3–7.2) for stage
1, stage 2, and stage 3 AKI, respectively, in the RIPC
group. The corresponding rates were 26.8 % (95 % CI
21.7–32.4), 9.4 % (95 % CI 5.7–15.3), and 4.8 % (95 % CI
2.0–10.9) in the control group. But there were no signifi-
cant differences in every stage of AKI. Contradictorily, the
incidence of RRT was slightly higher in the RIPC group
than in the control group (4.6 % [95 % CI 2.7–7.8] vs
3.2 % [95 % CI 1.6–6.4], RR 1.116 [95 % CI 0.524–2.377],
P = 0.776). In addition, RIPC significantly reduced the in-
cidence of AKI in the CI-AKI subgroup from 13.5 % to
6.5 % (RR 0.430, 95 % CI 0.286–0.648, P = 0.000), but not

Fig. 7 Forest plot showing effects of remote ischemic preconditioning on the change of estimated glomerular filtration rate within 72 h after procedures.
IR-AKI ischemia/reperfusion-induced acute kidney injury, CI-AKI contrast-induced acute kidney injury, RIPC remote ischemic preconditioning, SD standard
deviation, Std Diff standard difference
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in the IR-AKI subgroup, in which it reduced the incidence
from 29.5 % to 24.7 % (RR 0.905, 95 % CI 0.783–1.045,
P = 0.173). There was a significant difference between
these two subgroups (P = 0.001) (Figs. 2 and 3).

Meta-regression analyses
Random effects meta-regression showed that RIPC
tended to strengthen its renoprotection with a signifi-
cant difference (q = 3.95, df = 1, P = 0.047) along with a
higher percentage of DM. We did not find any other sig-
nificant correlation between the incidence of AKI and
probable confounding factors such as age, percentage of
male patients, other comorbidities, baseline eGFR, CPB
and cross-clamp time, and dose of contrast medium
(Fig. 4).

Effects of RIPC on SCr and eGFR
Data about maximum SCr values within 72 h after pro-
cedures were available in 13 trials; maximum increase of
SCr was available in 6 trials; and minimum eGFR values
were available in 7 trials. There were no significant dif-
ferences in these indexes for total AKI and subgroups
between the control and RIPC groups, except that RIPC
increased the minimum eGFR in the IR-AKI subgroup
(P = 0.006) compared with the control group (Figs. 5, 6
and 7).

Effects of RIPC on other AKI outcomes
Hospital or 30-day mortality rates were reported in 12
trials with an aggregated 5098 patients, but no

significant differences were observed between the RIPC
and control groups in total AKI (3.1 % vs 3.6 %, RR,
1.179, 95 % CI, 0.896–1.552, P = 0.240) and subgroup
analyses (Figs. 5 and 8). In 10 trials with an aggregated
3874 patients, researchers reported the length of ICU
stay, and in 15 trials with an aggregated 4231 patients
investigators reported the length of hospital stay. RIPC
reduced the length of ICU stay from 2.6 days (95 % CI
2.1–3.1) to 2.0 days (95 % CI 1.5–2.5) (standard differ-
ence in means −0.271, 95 % CI −0.447 to −0.095, P =
0.003), but it did not reduce the length of hospital stay
(standard difference in means −0.022, 95 % CI −0.083
to 0.038, P = 0.469) (Figs. 5 and 9).

Publication bias
The funnel plots showed no evidence of publication bias.
Egger’s test for a regression intercept gave P values of 0.177
for effects of RIPC on incidence of IR-AKI (Fig. 10a) and
0.178 for effects of RIPC on incidence of CI-AKI (Fig. 10b).

Discussion
We conducted an extensive, systematic review of the
protective effects of RIPC on AKI in the clinical setting.
With data from 30 RCTs comprising a total of 7244 pa-
tients, this analysis included substantially more trials
than previous published meta-analyses addressing this
question. It also provides a comparison of the protection
of RIPC on different cause-specific AKIs. In meta-

Fig. 8 Forest plot showing effects of remote ischemic preconditioning on hospital or 30-day mortality due to acute kidney injury. IR-AKI
ischemia/reperfusion-induced acute kidney injury, CI-AKI contrast-induced acute kidney injury, RIPC remote ischemic preconditioning, RR risk ratio
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regression analyses, we tried to find the patients who
were most likely to benefit from RIPC.

Effects of RIPC on the incidence of total AKI
The main finding of this meta-analysis was that RIPC
significantly decreased the incidence of AKI from 23.3 %
to 11.5 % (RR, 0.834, 95 % CI, 0.728–0.955, P = 0.009).
To our knowledge, this is the first meta-analysis to come
to this conclusion. In 2014, Yang et al [19] conducted a
meta-analysis with 13 trials and 1334 patients and con-
cluded that, compared with the control group, RIPC de-
creased the risk of AKI for patients undergoing cardiac
and vascular interventions with marginal statistical sig-
nificance (P = 0.06). Similarly, Li et al [37] concluded
that there was not a lower incidence of AKI in patients
undergoing cardiac and vascular interventions in the
RIPC group than in the control group (P = 0.10). In our
meta-analysis, data regarding the incidence of AKI were
available in 26 trials comprising 7009 patients; half of
these trials were newly published during 2014–2015 and
were not included in previous meta-analyses. Statistically,
RIPC could lead to a 17 % decrease in the risk of AKI.

Different effects of RIPC on the incidence of CI-AKI and
IR-AKI
In further subgroup analysis, we found that RIPC signifi-
cantly reduced the incidence of AKI in the CI-AKI
subgroup (P = 0.000), but not in the IR-AKI subgroup
(P = 0.173). IR was the main mechanism of AKI after
cardiac surgery, while the use of contrast medium led
mainly to renal injury in percutaneous coronary interven-
tion (PCI) or contrast-enhanced computed tomography.
Similarly, Yasin et al [18] did not find renoprotection of
RIPC after cardiac surgery (P = 0.07), while Pei et al [38]
concluded that RIPC significantly reduced the periopera-
tive incidence of CI-AKI in patients undergoing elective
coronary intervention (P = 0.04). We also analyzed the
effect size of RIPC on IR-AKI and CI-AKI, and we found
a significant subgroup difference (P = 0.000). So, patients
who are at risk of CI-AK might benefit more than those at
risk of IR-AKI.

Confounding factors that influenced the effects of RIPC
Various confounding factors influenced the effects of
RIPC on AKI. We found that a higher percentage of

Fig. 9 Effects of remote ischemic preconditioning on length of intensive care unit and hospital length of stay for acute kidney injury. ICU
intensive care unit, RIPC remote ischemic preconditioning, SD standard deviation, Std Diff standard difference
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patients with DM gained more benefits, with statistical
significance (P = 0.047), when random effects regression
was used, which was opposite to our previous understand-
ing. One trial [39] indicated that RIPC significantly re-
duces the incidence of contrast-induced nephrology in
patients without diabetes, but not in those with diabetes,
undergoing PCI. Schenning et al [40] also reported that is-
chemic preconditioning protected healthy but not hyper-
glycemic glomerular endothelial monolayers from IR
injury. Wouter et al [41] concluded that DM does not
abolish, but might reduce, the cardioprotective effect of is-
chemic postconditioning. In addition, age, sex, other co-
morbidities, CPB and cross-clamp time, and dose of

contrast medium may also be confounders of RIPC, but
there were no significant differences. In all, the effects of
RIPC on patients with a high risk of AKI need to be reas-
sessed in the future.

Effects of RIPC on other outcomes of AKI
In this meta-analysis, we did not find the effects of RIPC
on the incidence of AKI stages 1–3 or the incidence of
RRT. RIPC also did not reduce the hospital or 30-day
mortality or the length of hospital stay. Although
there were no significant differences in SCr and eGFR
in total AKI between the control and RIPC groups,
RIPC increased the minimum eGFR in the IR-AKI
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Fig. 10 Funnel plot to evaluate for publication bias for effects of remote ischemic preconditioning on incidence of acute kidney injury
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subgroup (P = 0.006) and reduced the length of ICU
stay from 2.6 to 2.0 days (P = 0.003), which was not
reported in previous meta-analyses.

Study limitations
It is important to note the limitations of our study. First,
the RIPC protocol should have an important influence
on its effects on AKI; however, with the limited data and
high heterogeneity in our present analysis, we cannot
conclude which protocol was superior to another (for
example, early or late RIPC, RIPC on arms or legs, and
so forth). Second, many confounding factors impact the
effects of RIPC, and meta-regression may not be enough
to verify this issue. Further clinical studies are needed to
test the renoprotection of RIPC in patients with high-
risk conditions. Third, it may be improper to define AKI
after cardiac surgery to be IR-AKI and to define AKI
after contrast medium injection to be CI-AKI, because
there were many other risk factors that could have
caused AKI in these situations.

Conclusions
We found strong evidence to support the application of
RIPC for prevention of CI-AKI but not IR-AKI. We
found low-quality evidence suggesting that RIPC was
associated with improvements in hospital mortality and
hospital length of stay. The various effects of RIPC on
AKI at different levels of risk need to be tested in future.

Additional files

Additional file 1: Demographic data of included clinical trials. AAA
abdominal aortic aneurysm, CABG coronary artery bypass grafting, CECT
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