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Abstract

The level of automation in mechanical ventilation has been steadily increasing over the last few decades. There has
recently been renewed interest in physiological closed-loop control of ventilation. The development of these systems
has followed a similar path to that of manual clinical ventilation, starting with ensuring optimal gas exchange and
shifting to the prevention of ventilator-induced lung injury. Systems currently aim to encompass both aspects, and
early commercial systems are appearing. These developments remain unknown to many clinicians and, hence, limit
their adoption into the clinical environment. This review shows the evolution of the physiological closed-loop control
of mechanical ventilation.
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Introduction
Closed-loop systems are designed to dynamically regu-
late a given variable around a desired set point. Examples
thereof surround our everyday lives, from cruise-control
maintaining the correct speed on the highway, to auto-
pilot flying modern airplanes safely.
Modern medical systems are increasingly incorporat-

ing these technological advances. Medical applications of
closed-loop control can be divided into systems that con-
trol a physical variable of the medical device and those
that control a physiological variable of the patient [1].
Many medical devices already incorporate device-internal
closed-loop control systems. An example is the inter-
nal regulation of the fraction of inspired oxygen to the
value set by the clinician. If there is some backward inter-
action between the patient and the medical device, the
system can be said to be patient-oriented. The control of
airway pressure during pressure-controlled ventilation is
such an example, because there is interaction between the
device and patient. Here, the controller also focuses on the
medical device.
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Regulating a physiological variable of the patient is
known as physiological closed-loop control (PCLC). With
the extensive physiological monitoring in today’s clinical
environment, PCLC is becoming ever more popular. In
this case, the patient is the focus of the control loop and
a physiological measurement is fed back to the controller.
The PCLC has recently been taken up by regulatory bod-
ies, with an international standard developed specifically
for it, namely the IEC 60601-1-10 [2] and a public work-
shop held by the Food and Drug Administration in 2015
with subsequent publication by Parvinian and colleagues
in 2018 [3].
Importantly, PCLC allows for the automation of certain

therapeutic tasks currently performed by medical staff.
Critical and emergency care especially is presumed to
benefit from increased automation, as these high-stress
environments have a shrinking workforce, as projected
by Angus et al. [4]. This limited supply of medical staff,
coupled with the labor-intensive practice of setting a ven-
tilator correctly [5, 6] means that proper, personalized
patient care will become even more difficult in the future.
The already high costs of keeping patients on mechanical
ventilation [7, 8] will also increase even further. If some
ventilator settings are adjusted automatically, this would
increase the time and capacity of the medical staff.
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Despite regaining attention recently, PCLC of mechan-
ical ventilation has been around for over half a century.
Similar to the guidelines of mechanical ventilation which
have evolved over time, from focusing on optimal gas
exchange to reducing ventilator-induced lung injury [9],
a similar trend can be seen in the research into PCLC
for mechanical ventilation. This review aims to show the
evolution of the PCLC of mechanical ventilation and its
close relationship with the clinical goals of mechanical
ventilation.

Scope and definitions
The criteria of search for this paper was as follows.
Firstly, relevant literature was identified from database
search combinations of the keywords: closed-loop, con-
trol, feedback and automation in combination with ven-
tilation, mechanical ventilation, and artificial ventilation.
Secondly, the search was narrowed down to include only
systems which used patient-specific physiological vari-
ables for the feedback control. The physiological variables
can be grouped loosely into oxygen, carbon dioxide, respi-
ratory mechanics, and patient demand. Thirdly, the phase
of weaning has so far benefited most from automation
and was therefore added as an additional search keyword.
Finally, only literature including studies with patients or
medium/large animals was included. Extensive additional
literature on theoretical approaches and simulative results
exists, but these still need to be validated experimentally.
Furthermore, previous reviews on closed-loop mechan-

ical ventilation exist and provided further relevant liter-
ature. Brunner presented an important early manuscript
describing the history and principles of closed-loop ven-
tilation [10]. Reviews of advanced closed-loop control in
mechanical ventilation have been provided by Lellouche
et al. [11], Wysocki et al. [12], and Branson [13].
In order to present a precise review, ventilation modes

and breathing patterns are not discussed; these have been

covered elsewhere, (e.g., Chatbrun et al. [14]). In addition,
other methods of ventilation, such as liquid, noisy, and
high-frequency ventilation, are beyond the scope of this
paper.

Concept of physiological closed-loop ventilation
The primary goal of mechanical ventilation is to rectify
and maintain adequate gas exchange. Ventilating patients
protectively has become another important goal during
mechanical ventilation.
The current clinical practice for choosing ventilator set-

tings is very complex and based on expert knowledge. The
modern clinician relies on classical physiologic variables
for mechanical ventilation, such as peripheral capillary
oxygen saturation (SpO2), end-tidal CO2 (etCO2), and
blood gas analysis (PaO2, PaCO2, pH). In addition, clin-
icians consider the protective guidelines, hemodynamic
parameters (heart rate, blood pressure, perfusion), and
derived variables such as the pF ratio, the oxygen A-a gra-
dient, shunt, transpulmonary pressure, and mechanical
power, among others [9].
The interaction of clinician, ventilator, and patient

forms a manual closed-loop system or “clinician-in-the-
loop” system. This is shown in a block diagram in Fig. 1.
Here the clinician acts as the controller and compares
the available physiological and derived measurements to
a defined control target before deciding on appropriate
ventilator settings (actuation).
This clinician-in-the-loop system is labor-intensive and

time-consuming, as the presence of the clinician is always
necessary. The clinician’s full attention is required to
adjust ventilator settings if the patient state changes and
to accommodate new therapeutic needs. If the clinician
is not present, the system becomes an open-loop system,
which is unable to respond if the oxygenation or ventila-
tion become insufficient due to worsening patient condi-
tions or external disturbances. Thismay lead to the patient

Fig. 1 Classical clinician-in-the-loop system. The physiological measurement and ventilator settings shown are only exemplary. In the clinical
environment, further derived measurement variables are also used. Clinician refers to the physicians, respiratory therapists, or nurses



von Platen et al. Critical Care          (2020) 24:121 Page 3 of 11

being poorly and not protectively ventilated, with possible
dire consequences.

Characteristics of closed-loop ventilation
An automated closed-loop system (also known as feed-
back control) can be implemented to keep a patient at a
specified target and respond to disturbances without the
clinician’s presence being necessary. Hereby, a controller
takes over the task of adapting ventilator settings. The new
control loop is depicted in Fig. 2 and shows the subtrac-
tion of a measured value from the target value and the
error being fed into the controller. The controller then
automatically decides on the correct ventilator settings to
minimize the error.
Importantly, the clinician’s focus changes to choosing

personalized targets, regulating variables supplementary
to the ventilation, such as hemodynamics and fluids, and
monitoring the system. It should be noted that the current
PCLC systems limit their measurement data to classical
ventilation variables, as will be shown later. Derived eval-
uations, such as pF ratio, stress and strain, or heart-lung
interactions, have not yet been used.
The goals of an automated closed-loop system can be

divided into setpoint tracking and disturbance rejection.
For most cases, setpoint control is only relevant when
the controller is switched on, as it describes the dynamic
response of the system until the target is reached. Set-
point changes are rare in the clinical environment. Exem-
plarily, the SpO2 target may be at 88–95% and seldom
changes. The disturbance rejection, however, is the true
hero during PCLC, as it is concerned with the response
of the system to disturbances and bringing the patient
back to the target range. Disturbances can take various
forms, both internal (worsening illness, lung stiffness,
increased CO2 production) and external (disconnection,
room temperature). The two goals are shown for an
illustrative example in Fig. 3, with a setpoint change
at t1 and a disturbance (extreme increase in CO2)
at t2.

The evolution of automated physiological control can
be categorized by two drivers: the control target and the
controller design. The control target is dictated on the
one hand by the measurements and sensors available,
some of which have been described above. On the other
hand, changing clinical evidence and guidelines present
new control targets. The second driver, controller design,
remains an engineering problem and is beyond the scope
of this paper. A brief overview is given here only to facili-
tate understanding. A natural evolution of the complexity
of the controllers comes with the use of computers and
their increasing computing power, and the detailed mod-
eling of the respiratory system, which is used for con-
troller synthesis and testing. Simple proportional, inte-
gral, and derivative (PID) controllers were used initially
[15, 16]. This summation of PID action is the most com-
mon controller used in almost all industries nowadays.
The tuning (setting up of this controller) is static, mean-
ing the controller needs to be tuned to every patient. To
overcome this, adaptive controllers [17–19] can be used,
which change their controller parameters to adapt to the
patient or scenario. A mathematical model of the system
is required for this, but recent advances in modeling res-
piratory systems have allowed their increased use. The
optimal controller attempts to solve an optimization prob-
lem, such as minimizing a cost function, in calculating the
actuation variable [20]. Model predictive control (MPC)
is another example of an advanced controller which uses
a dynamic model of the system [21, 22]. It optimizes
the current ventilator settings for the current state, while
anticipating future events. Finally, there has also been
increasing use of fuzzy control [23, 24]. A fuzzy controller
is a rule-based control law, in which the linguistic rules
(e.g., if-then-else rules) are fuzzified (blurred) in order to
make the control more elastic. These systems are popular
in the clinical environment, as the language-based expert
knowledge of clinicians is transferred into the design of
the controller (which is not the case in PID control, for
example). More robust controllers may be introduced in

Fig. 2 Physiological closed-loop control for mechanical ventilation system
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Fig. 3 Setpoint tracking and disturbance rejection shown for an
illustrative example. A good controller ensures that the measured
etCO2 closely follows the setpoint. At t1, a setpoint change (change in
target) requires an increase in minute volume (bottom graph). At t2, a
sudden increase in CO2 (disturbance) requires another increase in MV

the future. These are designed with uncertainty in mind
and can control the performance of the system even for
the worst case.

History of physiological closed-loop control
The PCLC of ventilation covers a broad range of
control targets. They can be grouped into controllers
focusing on gas exchange, lung mechanics (protective
ventilation), patient demand, and automation of clinical
protocols.

Control based on gas exchange
The first application of PCLC in mechanical ventilation
was presented by Saxton in 1953, with a publication
appearing in 1957 [15], where his team applied feedback
control to the iron lung to regulate the etCO2. In the same
decade, Frumin developed an automated anesthesia sys-
tem, which incorporated an etCO2 feedback control sys-
tem [16, 25]. Both systems used the ventilation pressure
as the actuating variable and were able to keep end-tidal
CO2 at the set target.
In 1971, Mitamura and colleagues controlled the mixed

expired CO2 using both tidal volume (VT ) and breath-
ing frequency (f ) [20]. Their system was able to keep
PCO2 at the target, even with extracorporeal CO2 load-
ing. Other groups focused on setting either VT or f
automatically, with the clinician setting the other vari-
able manually [26, 27]. Digital control using computers for
CO2 control started with Coles et al. in 1973 [26], and the
number of publications about feedback control in ventila-
tion increased. Coles et al. showed that the PCLC system
maintained the etCO2 at the target better than manual
control [26].
The availability of intravascular sensors for pH or

PaCO2 measurement introduced new closed-loop control

systems. Schulz et al. used such a sensor and feedback
control to respond to setpoint changes in PaCO2 [28].
The response dynamics of their system was, however, lim-
ited by the slow response time of the sensor. A similar
sensor problem caused the system of Coon et al. [29]
to oscillate. The continuous intravascular sensors, how-
ever, failed to remain commercially available and their use
has ceased. Without any clinical alternatives, the control
of CO2 was again based on the measurement of etCO2.
However, the increasing difference between PaCO2 and
etCO2 in the pathological lung requires compensation
[20, 28, 30]. Approaches based on first principles to link
etCO2 and PaCO2 were presented by Ohlson et al. [30],
but the authors could not compensate correctly when a
large variation of cardiac output appeared.
An extensive list of CO2 feedback control (often referred

to as ventilation control) systems over the past 50 years is
shown in Table 1. As can be seen, all systems presented so
far have been limited to proof-of-concept studies.
The focus was mostly on the control of CO2 until the

early 1970s, but in 1975, Mitamura [36] developed a “dual
control system” for both CO2 and O2. Here, the SpO2 was
measured using an ear oximeter and an on-off controller
was used for changing the inhaled oxygen content. The
controller was able to rectify the hypoxia.
Controlling only the oxygenation was performed in

preterm infants by Beddis et al. [37] in 1979; this was
made possible by using an indwelling umbilical arterial
oxygen electrode sensor. To evaluate their system, they
compared the time spent at the oxygenation target using
the controller to a clinician-in-the-loop system. This met-
ric was also used by others [38–44] and the automated
system was as good or better than the manual procedure
in all cases.
Yu et al. later used an oximeter on the tongue to control

the oxygenation and implemented an adaptive controller
in dogs [19]. This system was able to rectify hypoxia
and compensate for disturbances, such as positive end-
expiratory pressure (PEEP) changes and one lung venti-
lation. In 1991, East et al. [45] used both FiO2 and PEEP
to control PaO2. Whether to change FiO2 or PEEP was
based on previous clinical protocols and the system kept
the patients at the oxygenation target for up to 6 h [45].
Further literature on oxygenation control is summarized

in Table 2. The control of oxygenation using the fraction of
inspired oxygen remains an active field of research, espe-
cially in neonates. A recent review of oxygenation control
was published by Claure and Bancalari in 2013 [46]. The
systems presented by Claure et al. [41], Urschitz et al. [42],
and Gajdos et al. [44] have been developed further and
are now commercially available as AVEA-CLiO2 (CareFu-
sion, Yorba Linda, CA, USA), CLAC (Löwenstein Medical
GmbH & Co. KG, Bad Ems, Germany), and SPOC (Fritz
Stephan GmbH, Gackenbach, Germany), respectively.
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Table 1 Chronological development of closed-loop ventilation for CO2 and pH control in vivo

Year First author Controller type Patient Ventilation variables Subject Setpoint control Disturbance control

1957 Saxton [15] PI etCO2 Pinsp Patients (n = 2) x o

1957 Frumin [16] PI etCO2 Pinsp Patients (n = 64) x o

1959 Frumin [25] PI etCO2 Pinsp Patients (n = 50) x o

1968 Holloman [31] PI etCO2 FiCO2 Patient (n = 1) x o

1971 Mitamura [20] Optimal V̇CO2 VT , f Dogs (n = 18) x x

1973 Coles [26] PI etCO2 VT Sheep (n = 1) x o

1974 Schulz [28] PD PaCO2 VT Patients (n = 11) x o

1978 Coon [29] PID pH VT Dogs (n = 30) x x

1978 Smith [27] PI etCO2 f Cat (n = 1) o x

1982 East [32] PID PaCO2 f Dogs (n = 18) x o

1982 Ohlson [30] PID etCO2 VT Dogs (n = 6) o x

1984 Bhansali [33] P etCO2 VT Dogs (n = 3) x x

1985 Chapman [34] PI etCO2 MV Dogs (n = 5) x x

1987 Ritchie [35] PI etCO2 VT Dogs (n = 5) x x

1994 Takahara[17] Adaptive etCO2 VT Patients (n = 10) x o

1996 Schäublin [23] Fuzzy etCO2 VT , f Patients (n = 30) x o

2002 Fernando [21] MPC PaCO2 MMV level Patient (n = 1) x o

2004 Martinoni [22] MPC etCO2 MV Patients (n = 15) x x

Setpoint control is the dynamic response of the system to changes of the target. Disturbance control is the response of the system to an external disturbance (e.g.,
extracorporeal CO2 loading, pulmonary artery occlusion or disconnection)

Table 2 Chronological development of closed-loop ventilation for O2 control in vivo

Year First author Controller type Patient Ventilation variables Subject Setpoint control Compared to Manual

1975 Mitamura [36] On/off SaO2 FiO2 – x o

1979 Beddis [37] P PaO2 FiO2 Neonates (n = 12) o o

1985 Sano [18] Adaptive tcPO2 FiO2 Dogs (n = 2) x o

1987 Yu [19] Adaptive SpO2 FiO2 Dogs (n = 8) x o

1988 Dugdale [38] Robust PaO2 FiO2 Neonates (n = 7) o x

1991 East [45] PID PaO2 PEEP, FiO2 Dogs (n = 4) x o

1992 Bhutani [39] PID SaO2 FiO2 Neonates (n = 14) o x

1995 Waisel [40] Expert SaO2 FiO2, PEEP Patients (n = 6) o x

1997 Raemer [47] PID SpO2 FiO2 Dogs (n = 6) x o

2001 Claure [41] Rule-based SpO2 FiO2 Neonates (n = 14) o x

2004 Urschitz [42] Expert SpO2 FiO2 Neonates (n = 12) o x

2008 Johannigman [48] PID SpO2 FiO2 Patients (n = 15) x o

2017 Morozoff [49] Adaptive SaO2 FiO2 Neonates (n = 7) o x

2018 Gajdos [44] Adaptive SpO2 FiO2 Neonates (n = 12) o x

Setpoint control is again the dynamic response of the system to changes of the target. Disturbance rejection was seldom evaluated for O2 control systems. Instead, the
controller was compared to a manual (clinician-in-the-loop) system, with the metric being the total time spent at the target zone
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Importantly, the control of oxygenation has mostly been
limited to using only the FiO2 so far. This closely reflects
the clinical difficulty in correctly choosing the PEEP—not
least because oxygenation alone is not a reliable measure-
ment of a good PEEP.
A large disadvantage of most of the closed-loop venti-

lation strategies presented is that they focus only on gas
exchange and do not consider lung mechanics and quan-
tification of harm. In fact, achieving proper CO2 control
may require excessive VT or peak inspiration pressure,
which can cause ventilator-induced lung injury (VILI).
With clinical ventilation strategies becoming focused on
being protective and preventing VILI, this requirement
also needed to be incorporated into closed-loop control.
Hence, control considering lung mechanics is presented
next.

Control considering lungmechanics
Mitamura et al. considered minimizing ventilatory work
as a further goal of their controller as early as 1971 [20].
The idea is closely related to that of Otis et al. [50]
from 1950, which suggests that there exists an optimal
combination of respiratory rate and tidal volume for min-
imal work of breathing. This approach was also used
by Tehrani [51] and Laubscher [52] in 1991 and 1994,
respectively. Laubscher et al. showed that their controller
was able to adapt to personalized respiratory mechan-
ics in a study on six patients. Laubscher and colleagues
advanced their adaptive lung ventilation (ALV) controller
(1994) to a newer version called adaptive support venti-
lation (ASV). Arnal et al. [53] tested the ASV controller
on 243 patients with different respiratory lung condi-
tions and showed the ability of the controller to choose
VT–f combinations related to actual personalized lung
mechanics.
Rudowski et al. [54] addressed the concerns of VILI

directly with the peak respiratory power index, as an index
of lung trauma, in 1991. Their controller adjusts ventila-
tor settings to reduce the respiratory power index, while
ensuring adequate gas exchange. A study with six patients
showed promising results.
Many modern systems do not directly control the venti-

lator using lung mechanics, but rather apply hard limits to
ensure that tidal volume and pressure stay within certain,
evidence-based, limits.

Control based on patient demand
It is also important to note here that the majority of liter-
ature presented so far considers only controlled (manda-
tory) ventilation, i.e., the patient is passive. However, in
many cases, the patient is allowed or expected to breathe
spontaneously, meaning patient demand becomes impor-
tant. Early work was performed by Younes et al. with
proportional assist ventilation (PAV) in 1992 [55]. This

positive feedback control system amplified patient effort,
according to the respiratory mechanics and level of assis-
tance set by the operator. This ensures synchrony, while
automatically adapting to patient load. For the initial ver-
sion of PAV, the clinician required knowledge of the res-
piratory mechanics of the patient to set an appropriate
controller gain, but the newer version, called PAV+, esti-
mates the individual respiratory mechanics automatically
[56, 57].
In 1996, Iotti et al. proposed P0.1 closed-loop control

ventilation, whereby the drop in airway occlusion pres-
sure during the first 0.1 s of inspiration is used to estimate
patient work [58]. Two independent controllers, one for
P0.1 and the other for alveolar volume, are fed into a
merged control algorithmwhich changes the level of pres-
sure support. The authors showed that inspiration activity
of the patient can be stabilized at a desired level using P0.1,
thus allowing for the unloading of the inspiratory muscles.
A direct coupling to the physiological neural output

of the respiratory system would be helpful for optimal
support during spontaneous breathing. An attempt to
couple a respirator to phrenic nerve activity was per-
formed in 1970 on animals [59], but this was not feasible
in humans. Instead, Sinderby et al. [60] used the diaphrag-
matic electrical activity (EAdi) for neuro-ventilatory cou-
pling to adjust the level of ventilatory support. This system
requires the placement of an esophageal catheter. This
system is commercially available as neurally adjusted ven-
tilatory assist (NAVA) (Maquet Critical Care AB, Solna,
Sweden). Improved patient-ventilator synchrony for this
system was shown by [61], but the authors noted that the
clinical impact thereof still needed to be determined.

Automation of clinical protocols
There have been various approaches to computerize clini-
cal protocols which medical staff use to adapt mechanical
ventilator settings. These computerized decision support
systems do not make active changes to the ventilator but
rather propose a change; the clinician has to be present
to make the change and, as such, they represent classical
clinician-in-the-loop systems. A literature review of these
systems is given in [62].
Pomprapa et al. automated the ARDSNet protocol

(autoARDSNet) and tested the system in a pilot study
with seven pigs [63]. The system kept the animals at the
oxygenation and pH targets for a duration of 4 h, even
compensating for a disconnection between ventilator and
patient.

Highly automated systems
Academia and industry have started to present highly and
even fully automated systems which rely on a culmina-
tion of all the sub-categories of control targets presented
above. This involves keeping an acceptable homeostasis
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of blood gases, ensuring patient-ventilator synchrony and
preventing VILI. The topology for such a control loop is
shown in Fig. 4.
The commercially available INTELLiVENT� - ASV�

(Hamilton Medical AG, Bonaduz, Switzerland) is one
example of a highly automated system. The control tar-
gets are the etCO2 and SpO2. In addition, the user has to
provide some patient data, which is used for the estima-
tion of lung mechanics. Oxygenation control is achieved
by changing either PEEP or FiO2, according to the clinical
guidelines from the ARDSNet protocol. Ventilation con-
trol (CO2 elimination) is controlled by a cascaded control
loop, which includes the ASV controller described above.
Another highly automated system has been presented

by Schwaiberger et al. in 2018 [64]. The etCO2 was con-
trolled using fuzzy control; the principles of the open
lung concept [65] were used for improved oxygenation
and low VT ventilation ensuring protective ventilation
was achieved [66]. A pilot study on eight pigs showed
promising results but clinical trials are still pending. Fur-
thermore, this system has only been applicable to passive
patients.

Weaning
The final phase of mechanical ventilation has already
seen some of the most advanced closed-loop systems
becoming commercially available. The same control tar-
gets presented above also hold true for the weaning
phase, but an additional goal during weaning is to reduce
the reliance of the patient on the ventilator and to test

whether the patient can be taken off mechanical aid
completely.
A first approach to automated weaning was made by

Hewlett et al. in 1977 [67] with mandatory minute venti-
lation.
However, the first automated physiological weaning

approach was proposed by Chopin et al. in 1989 [68]. In
their “carbon dioxide mandatory ventilation (CO2MV)”
method, the authors used etCO2 and a rule-based con-
troller to switch between spontaneous and controlled ven-
tilation. In 1991, Strickland and Hasson [69] used pulse
oximetry, respiratory rate, and minute ventilation to auto-
matically set the synchronized intermittent mandatory
ventilation rate and level of pressure support ventila-
tion (PSV). Weaning was considered complete when the
pressure support had reached zero; two or less manda-
tory breaths per minute were required and BGA showed
sufficient evidence.
Dojat et al. [70] developed the GANESH system, which

used the etCO2, respiratory rate, and VT as inputs for
their rule-based controller to set the level of PSV. The goal
of this strategy was to bring the patient into a zone of com-
fort, at which point permanent weaning was envisaged.
This system was developed further, called NéoGanesh,
and presented in 1997 [71] with a sophisticated knowledge
and temporal reasoning controller. Finally, this system
is available as SmartCare�/PS from Dräger (Drägerwerk
AG, Lübeck, Germany).
The ALV controller by Laubscher et al. described pre-

viously was used for weaning by Linton and colleagues

Fig. 4 Control topology for a fully automated physiological closed-loop ventilation. Measurement signals fed back to the controller are categorized
according to the control target. The list of physiological measurements is not complete but shows only examples taken from the presented PCLC
systems
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in 1994 [72]. Expanding on ALV, the ASV was devel-
oped. Given a patient capable of initiating spontaneous
breathing, the ASV algorithm automatically decreases the
inspiratory pressure. Once all breaths are spontaneous
and stable gas exchange is ensured, weaning is considered
complete. There was no direct feedback of gas exchange in
the early versions. This has changed with the introduction
of the INTELLiVENT� - ASV�.

Evaluation of commercial physiological
closed-loop ventilation
The papers presented so far have shown novel methods
of applying physiological closed-loop control to mechan-
ical ventilation and were able to test the systems on
medium/large animals or a small number of patients.
The commercial availability of some of these systems
has allowed clinical studies to be performed. Brogi et
al. did a systematic review and meta-analysis of closed-
loop systems in the clinical environment. Five stud-
ies using automated FiO2 adjustments based on SpO2
measurements and three studies investigating ventilation
control (etCO2) were included in the review. The time
spent in the target zone was longer for automated sys-
tems in all studies [73]. The NAVA system was eval-
uated in a study by Demoule et al. and compared to
the ventilation with PSV. Patient-ventilator asynchrony
was reduced despite not increasing the probability of
remaining in a partial ventilatory mode [74]. Rose et al.
did a Cochrane systematic review and meta-analysis of
clinical trials comparing automated and non-automated
weaning [75]. The review included 21 trials, totaling
1676 patients, and included automated systems such as
SmartCare�/PS, ALV, and INTELLiVENT� - ASV�.
They found that the weaning and ventilation duration was
significantly reduced by automated systems [75]. Impor-
tantly, no strong effect on mortality was found. Burns
et al. used the SmartCare system to compare closed-
loop control of weaning to the manual protocol-based
weaning [76]. They concluded that automated weaning
showed promising results, but warranted further investi-
gation [76]. A randomized controlled study by Lellouche
et al. showed that the required number of interventions
by clinical staff was reduced when using a fully automated
ventilation system, thus, reducing the workload of the
staff [77]. Arnal et al. showed that the INTELLiVENT�

- ASV� reduced the number of manual ventilator setting
changes in ICU patients [6]. They further concluded that
this may increase the efficiency of the workforce [6].
These first analyses of clinical studies show promise that

the application of PCLC to mechanical ventilation can
reduce the workload of clinical staff and keep patients
within personalized oxygenation and ventilation target
zones safely. However, whether fully automated system

will lead to improved mortality rates remains an open
question.

Outlook
The evolution of the PCLC in mechanical ventilation con-
tinues to be driven by new controller designs, improved
modeling, new sensor modalities, and better ventilation
strategies.
Improved controller designs are needed that consider

the cross-coupling effects of ventilator settings. Control-
ling CO2 by changing the MV will indirectly affect the
oxygenation—which is not considered by any of the pre-
sented PCLC systems.
New measurements and imaging techniques are being

applied in the “clinician-in-the-loop” setting, which could
be used for automatic control in the future. The transpul-
monary pressure, derived by subtracting the measured
esophageal pressure from the airway pressure, is being
researched as an approach to finding the appropri-
ate PEEP setting [78]. Electrical impedance tomography
(EIT), as a measurement technique, is gaining acceptance
to titrate PEEP and also gain insight into the ventilated
lungs. Recent reviews of electrical impedance tomography
are presented by [79–81].
Derived evaluations, such as the oxygen A-a gradient for

oxygenation or stress and strain for protective ventilation,
need to be incorporated into PCLC systems. The hemody-
namic effects of ventilator changes (e.g., increasing PEEP)
also need to be accounted for by the PCLC system. Fur-
thermore, the medical history of the patient should be
considered by the PCLC system.
With most data becoming digitized, it is plausible that

this data will be available to the ventilator in the future.
In such a cyber-medical world, all data will be trans-
ferred between all medical devices and this data will allow
artificial intelligence to be applied to mechanical ventila-
tion. Prasad and colleagues described a decision support
system based on artificial intelligence [82].
Despite the many advantages that come with PCLC,

the dangers thereof may not be forgotten. Sensor failure,
unpredictable disturbances and software errors remain
issues in any automated system and safety concepts need
to be developed to ensure no harm is done to the patient.
Kuck and Johnson [83] formulate the three laws for
automation in anesthesia nicely: (1) do no harm, (2) be
transparent, and (3) reduce the cognitive workload. A sim-
ilar approach should be taken in the further development
of closed-loop control of mechanical ventilation.

Conclusion
The application of PCLC tomechanical ventilation started
well over half a century ago and all this research is
beginning to bear fruit resulting in highly automated
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ventilators. As these first systems become commercially
available, it is expected that more will follow, fed with
new technology from industry and academia and, as such,
the dawn of physiological closed-loop ventilation has cer-
tainly arrived.
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