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Urinary metabolites predict mortality 
or need for renal replacement therapy 
after combat injury
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Abstract 

Background:  Traditionally, patient risk scoring is done by evaluating vital signs and clinical severity scores with clini-
cal intuition. Urinary biomarkers can add objectivity to these models to make risk prediction more accurate. We used 
metabolomics to identify prognostic urinary biomarkers of mortality or need for renal replacement therapy (RRT). 
Additionally, we assessed acute kidney injury (AKI) diagnosis, injury severity score (ISS), and AKI stage.

Methods:  Urine samples (n = 82) from a previous study of combat casualties were evaluated using proton nuclear 
magnetic resonance (1H-NMR) spectroscopy. Chenomx software was used to identify and quantify urinary metabo-
lites. Metabolite concentrations were normalized by urine output, autoscaled, and log-transformed. Partial least 
squares discriminant analysis (PLS-DA) and statistical analysis were performed. Receiver operating characteristic (ROC) 
curves were used to assess prognostic utility of biomarkers for mortality and RRT.

Results:  Eighty-four (84) metabolites were identified and quantified in each urine sample. Of these, 11 were identi-
fied as drugs or drug metabolites and excluded. The PLS-DA models for ISS and AKI diagnosis did not have acceptable 
model statistics. Therefore, only mortality/RRT and AKI stage were analyzed further. Of 73 analyzed metabolites, 9 were 
significantly associated with mortality/RRT (p < 0.05) and 11 were significantly associated with AKI stage (p < 0.05). 
1-Methylnicotinamide was the only metabolite to be significantly associated (p < 0.05) with all outcomes and was sig-
nificantly higher (p < 0.05) in patients with adverse outcomes. Elevated lactate and 1-methylnicotinamide levels were 
associated with higher AKI stage and mortality and RRT, whereas elevated glycine levels were associated with patients 
who survived and did not require RRT, or had less severe AKI. ROC curves for each of these metabolites and the com-
bined panel had good predictive value (lactate AUC = 0.901, 1-methylnicotinamide AUC = 0.864, glycine AUC = 0.735, 
panel AUC = 0.858).

Conclusions:  We identified urinary metabolites associated with AKI stage and the primary outcome of mortality or 
need for RRT. Lactate, 1-methylnicotinamide, and glycine may be used as a panel of predictive biomarkers for mor-
tality and RRT. 1-Methylnicotinamide is a novel biomarker associated with adverse outcomes. Additional studies are 
necessary to determine how these metabolites can be utilized in clinically-relevant risk prediction models.

Keywords:  Acute kidney injury, Biomarkers, Metabolites, Combat injury, Risk prediction, Metabolomics, Renal 
replacement therapy
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Background
Traditionally, patient risk scoring is done by evaluat-
ing vital signs and clinical severity scores with clinical 
intuition [1]. Risk prediction is especially important in 
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hospitals caring for combat injured patients. This patient 
population may have delayed access to care, limited 
access to resources, multiple mechanisms of injury, more 
severe injury, and higher risk of a penetrating injury [2]. 
Accurate prediction models may allow for better resource 
allocation, more efficient triage of patients, and identify 
patients at higher risk for an adverse outcome, which will 
improve patient survival and recovery [1].

In addition, organ dysfunction, such as acute kid-
ney injury (AKI), can cause complications in critically 
ill patients and increase the risk of mortality [3]. Acute 
kidney injury (AKI) is defined as a sudden decrease of 
kidney function caused by direct kidney injury or func-
tional impairment [4]. Among intensive care unit (ICU) 
patients with AKI, mortality is around 50%, and in 
patients that require renal replacement therapy (RRT) it 
can be as high as 80% [3]. Important barriers to improv-
ing AKI treatment and outcomes are identifying patients 
at risk for non-recovery or developing severe AKI [5].

To this end, we explored urinary biomarkers that could 
predict mortality and the need for RRT (which is severe 
AKI). Urinary biomarkers can add objectivity to risk pre-
diction models to make risk prediction more accurate [1]. 
Additionally, we investigated biomarkers of AKI diag-
nosis, injury severity score (ISS), and AKI stage. Previ-
ous work has been done to evaluate urinary biomarkers 
associated with AKI, but these studies have focused on 
a few proteins whose diagnostic ability has been ques-
tioned [6]. Due to its complex pathophysiology, it may 
be necessary to create a panel of biomarkers for diagnos-
tic and prognostic assessment of AKI. Therefore, for the 
identification and quantification of metabolites, we used 
metabolomics. An advantage of metabolomics over pro-
teomics and genomics is that metabolomics directly cap-
tures phenotypic changes that occur in the system [7].

In this study we used nuclear magnetic resonance 
(NMR) metabolomics to detect changes in urinary 
metabolite levels in combat casualties. Specifically, we 
aimed to identify urinary biomarkers predictive of mor-
tality or need for renal replacement therapy, and bio-
markers associated with AKI diagnosis, injury severity 
score, and AKI severity.

Materials and methods
Urine sample collection and patient enrollment
We performed a secondary analysis on urine samples 
from a published study on risk prediction for com-
bat casualties by Stewart et  al. [1]. Of note, the original 
study included 89 subjects. However, urine from 82 sub-
jects was available for this secondary analysis. Materials 
and methods for enrollment criteria and consent, sam-
ple collection, and IRB approval for human patients (the 
US Army Medical Research and Materiel Command) 

have been described [1]. Briefly, patients were US mili-
tary personnel with traumatic injuries admitted to an 
ICU in a combat hospital in Afghanistan from October 
2012 to December 2013. Patients were excluded if it had 
been more than 48 h since injury or they did not have a 
Foley catheter. Urine samples were collected within 3  h 
of admission, centrifuged at 2000g for 10 min, then fro-
zen (−  80  °C) for transport within 1 h of collection [1]. 
Demographics, injury severity score, blood transfusions 
and other lab values were collected prospectively. Need 
for renal replacement therapy and mortality were col-
lected retrospectively. Kidney Disease: Improving Global 
Outcomes (KDIGO) criteria was used to diagnose and 
stage AKI [1, 8].

Urine sample preparation
Urine samples were stored at -80  °C until analysis [1]. 
Samples were filtered to remove protein with Centrifree 
Ultrafiltration devices (Millipore, Bilerica, MA). Filters 
were washed 5 times to remove glycerol. Samples were 
filtered by centrifugation at 6000 rpm for 2–3 h at 4 °C. 
For NMR analysis, 1 mL of filtrate was mixed with 0.5 mL 
of 0.2  M sodium phosphate buffer. The solution was 
placed on ice for 10 min and then centrifuged at 7000 g 
at room temperature for 10 min. 500 μL of the superna-
tant was withdrawn and combined with 50 μL of 1 mM 
3-(trimethylsilyl) propionic acid (TSP, Sigma-Aldrich, St. 
Louis, MO, USA) [9]. The pH of the solution was meas-
ured, then the solution was transferred to 5  mm NMR 
tubes for analysis.

1H‑NMR spectroscopy
One-dimensional proton NMR (1H-NMR) spectra were 
acquired on a 700-MHz Bruker Avance NMR spectrom-
eter with a 5-mm TXI proton-enhanced cryoprobe run-
ning TopSpin v. 2.16 (Bruker, Bilerica, MA, USA). A 1D 
NOESY (Nuclear Overhauser Effect Spectroscopy) pulse 
sequence was used to collect spectra of each sample. All 
spectra were collected at 298 K (K).

Untargeted analysis of spectra
Spectra were analyzed using Chenomx software (Edmon-
ton, AB, Canada) [10]. Manual phasing, baseline cor-
rection, and untargeted metabolic profiling using the 
Chenomx library was performed by a single person. This 
resulted in a list of identified metabolites and their con-
centrations in millimoles per liter (mM).

Normalization
Metabolite concentrations were normalized by urine 
output (UO) to account for dilution effects in the urine 
[11]. The urine output used to normalize the data was 
the average of two hours of urine output [1]. The final 
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units for the normalized metabolite concentrations were 
mM/h/kg. The conversion and normalization calcula-
tions were done in Microsoft Excel (Microsoft, Redmond, 
WA, USA).

Statistical analysis
The normalized metabolite concentrations were auto-
scaled and log-transformed using R software (R Founda-
tion for Statistical Computing, http://​cran.r-​proie​ct.​org/) 
[12]. Partial least squares discriminant analysis (PLS-DA) 
was performed on the following outcomes (groups): AKI 
stage (0–1 (none-mild) or 2–3 (moderate-severe)), mor-
tality or required RRT (yes or no), AKI diagnosis (yes or 
no), injury severity score (< 25 or ≥ 25). Mortality and 
need for renal replacement therapy were analyzed as a 
combined endpoint (mortality/RRT) due to small n. Of 
note, mortality is defined as all-cause mortality with or 
without AKI. We used the following guidelines to assess 
our PLS-DA models: for R2, a value of greater than 0.67 
represented high predictive accuracy, 0.33–0.67 was 
moderate, 0.19–0.33 was low, and below 0.19 was unac-
ceptable. Q2 values above zero indicated the model had 
predictive relevance whereas values below zero indicated 
no predictive relevance, and the Q2 value should be less 
than the R2 value [13]. Permutation p values were used 
to judge the statistical significance of the PLS-DA model. 
The DiscriMiner package in R was used for the PLS-DA 
analysis.

Variable importance projection (VIP) scores were used 
to identify a metabolite’s contribution to the separation 
between groups in the PLS-DA model. The Wilcoxon 

rank-sum test was used to evaluate the statistical signifi-
cance (p < 0.05) between the metabolite concentrations 
of the outcome groups. Boxplots were used to illustrate 
differences between groups. To determine the diagnostic 
ability of biomarkers for mortality/RRT, receiver operat-
ing characteristic (ROC) curves were made and the area 
under the curve (AUC) was evaluated. ROC curves were 
made using the ROCR package in R [14].

Results
Sample collection and 1H‑NMR data
The study population was comprised of 82 patients (US 
military personnel) admitted to a combat hospital in 
Afghanistan with traumatic injury requiring ICU-level 
care [1]. The study population was 96.3% male with an 
average age of 26.8 ± 5.1  years (Table  1). Compared to 
patients who survived or did not need RRT, those in the 
mortality/RRT group had more severe injury indicated 
by the significantly (p < 0.05) higher median lactate levels, 
median injury severity scores, and percentage of patients 
requiring a massive transfusion (Table 1).

Eighty-four (84) metabolites were identified and quan-
tified in each urine sample. Of these, 11 were identified 
as drugs or drug metabolites and excluded from further 
analysis (Additional file 1). The remaining 73 metabolites 
are listed in Table 2 and their peaks are labeled in Addi-
tional file 2.

Partial least squares discriminant analysis
The R2 and Q2 values and p values of the PLS-DA mod-
els were evaluated (Table  3). Based on model R2, Q2, 

Table 1  Patient cohort characteristics

Reported as mean ± standard deviation unless indicated otherwise. p value compares patients who survived or did not need RRT to those who reached mortality or 
required RRT. Adapted from reference 4. AKI acute kidney injury, ISS injury severity score, IQR interquartile range, RRT​ renal replacement therapy, Mass. massive

Characteristic Full cohort Survived or No RRT​ Mortality or RRT​ p value

Number 82 70 12 –

Age (years) 26.8 ± 5.1 26.6 ± 5.2 27.8 ± 4.9 0.31

Male (%) 96.3 95.7 100 1.0

Median ISS (IQR) 18.5 (11.8, 40.3) 18 (9, 33.8) 46 (29.3, 63) 0.002

Median lactate (IQR) 1.8 (1.1, 2.9) 1.5 (1, 2.5) 4.3 (2.3, 6.4) < 0.001

Mass. transfusion (n (%)) 32 (39) 23 (32.9) 9 (75) 0.009

AKI Diagnosis (n (%)) 33 (40.2) 23 (32.9) 10 (83.3) 0.003

RRT (n (%)) 6 (7.3) – 6 (50) –

Mortality (n (%)) 9 (11) – 9 (75) –

RRT and survived (n (%)) 3 (3.7) – 3 (25) –

Mortality and no RRT (n (%)) 6 (7.3) – 6 (50) –

No AKI (n (%)) 49 (59.8) 47 (67.1) 2 (16.7) < 0.001

AKI stage 1 (n (%)) 23 (28) 21 (30) 2 (16.7)

AKI stage 2 (n (%)) 4 (4.9) 2 (2.9) 2 (16.7)

AKI stage 3 (n (%)) 6 (7.3) – 6 (50)

http://cran.r-proiect.org/


Page 4 of 14Gisewhite et al. Crit Care          (2021) 25:119 

and permutation p values, ISS and AKI diagnosis were 
excluded from further analysis (Additional files 3 and 4). 
The mortality/RRT PLS-DA model had an insignificant p 
value, however, we postulated that by relaxing the thresh-
old of p < 0.05 we would be able to draw useful conclu-
sions that had clinical significance since mortality and 
renal replacement therapy are important combat casu-
alty and AKI outcomes [1, 4, 15]. Furthermore, the other 
model statistics for mortality/RRT were acceptable and 

comparable to the AKI stage PLS-DA model. Therefore, 
we proceeded with our analyses of mortality/RRT and 
AKI stage.

Mortality and renal replacement therapy
Twelve (12) patients reached the endpoint of mortality 
or need for RRT. Two (2) of the patients in the mortal-
ity/RRT group did not have or develop AKI. The PLS-DA 
scores plot (Fig.  1a) shows separation between patients 
who reached the endpoint versus those who did not. The 
corresponding PLS-DA loadings plot (Fig.  1b) and VIP 
scores table (Table 4) show that 9 metabolites were sig-
nificantly associated with mortality/RRT (p < 0.05). In the 
loadings plot, metabolites trending towards the bottom 
left were present in higher levels in the mortality/RRT 
group. Metabolites trending to the top right were present 
in lower levels in the mortality/RRT group. Metabolites 
1-methylnicotinamide, lactate, and glucose were associ-
ated the mortality/RRT group while glycine was associ-
ated with those who survived or did not need RRT.

Acute kidney injury stage
Ten (10) patients had moderate to severe AKI (stage 2–3). 
The majority of these subjects (n = 6) had developed AKI 
prior to the urine sample being taken. The PLS-DA scores 
plot (Fig. 2a) shows separation between patients who had 
moderate to severe AKI versus those who had none or 
mild AKI (stage 0–1). The corresponding PLS-DA load-
ings plot (Fig.  2b) and VIP scores table (Table  5) show 
that 11 metabolites were significantly associated with 
moderate to severe AKI (p < 0.05). In the loadings plot, 
metabolites in the bottom left were present in higher lev-
els in the moderate to severe AKI group. Metabolites in 
the top right were present in lower levels in the moderate 
to severe AKI group. Lactate and 1-methylnicotinamide 
were associated with the moderate to severe AKI group 
and glycine was associated with the none or mild AKI 
group.

Table 2  List of 73 metabolites used in analysis

List of 73 metabolites used in analysis of outcomes after exclusion of exogenous 
metabolites (Additional file 1)

Identified metabolites

1-Methylnicotinamide Hydroxyacetone

1,6-Anhydro-beta-D-glucose Hypoxanthine

2-Aminoadipate Indole-3-acetate

2-Aminobutyrate Isoleucine

2-Hydroxybutyrate Lactate

2-Hydroxyisobutyrate Lactose

2-Hydroxyvalerate Leucine

2-Oxoglutarate Lysine

3-Aminoisobutyrate Malonate

3-Hydroxybutyrate Methylguanidine

3-Hydroxyisobutyrate Methylmalonate

3-Hydroxyisovalerate myo-Inositol

3-Indoxylsulfate N-Methylhydantoin

3-Methyl-2-oxovalerate N,N-Dimethylglycine

Acetate O-Acetylcarnitine

Acetoacetate O-Phosphocholine

Acetone Phenylacetylglycine

Alanine Phenylalanine

Betaine Pyridoxine

Carnitine Pyruvate

Choline Sarcosine

cis-Aconitate Succinate

Citrate Tartrate

Creatine Taurine

Creatine phosphate Threonine

Creatinine Trigonelline

Dimethylamine Trimethylamine

Ethanolamine Trimethylamine N-oxide

Formate Tyramine

Fucose Tyrosine

Fumarate Urea

Glucose Valine

Glutamine Xanthine

Glycine Xanthosine

Hippurate pi-Methylhistidine

Histamine tau-Methylhistidine

Histidine

Table 3  PLS-DA model values

Bolded: acceptable model statistics and included in further analysis. RRT​ renal 
replacement therapy, AKI acute kidney injury

Outcome R2 Q2 Permutation
p value

AKI Stage: 0–1 (none-mild) or 2–3 
(moderate-severe)

0.487 0.302 0.013

Mortality/RRT: Yes or no 0.536 0.324 0.173

AKI diagnosis: Yes or no 0.382 0.22 0.306

Injury severity score (ISS): < 25 or ≥ 25 0.46 0.265 0.402
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1‑Methylnicotinamide, lactate, and glycine
Based on the PLS-DA loadings plots, VIP scores, and 
univariate statistics, 1-methylnicotinamide and lactate 
were most associated with adverse outcomes while gly-
cine was associated with better outcomes. Lactate and 
1-methylnicotinamide levels were significantly higher in 
patients who had more severe AKI and in patients who 
reached the endpoint of mortality/RRT versus those who 
did not (Fig.  3a, b, p < 0.001). Glycine levels are signifi-
cantly lower in mortality/RRT patients versus survived or 
no RRT patients (Fig. 3c, p = 0.01) and lower in patients 

who had more severe AKI (Fig.  3c, p = 0.06). The only 
metabolite to be significantly associated with all adverse 
outcomes was 1-methylnicotinamide. In addition to AKI 
stage and mortality/RRT, 1-methylnicotinamide was sig-
nificantly (p < 0.05) higher in patients with a higher injury 
severity score (25 ≤) and patients diagnosed with AKI 
(Additional file 5).

Receiver operating characteristics curves of 1-methyl-
nicotinamide, lactate, glycine, and the three metabolites 
as a panel were generated to analyze the metabolites’ 
diagnostic ability for mortality or need for renal replace-
ment therapy (Fig.  4). Based on the area under the 
curve (AUC), lactate alone had the greatest ability 
(AUC = 0.901, Fig.  4b), followed by 1-methylnicotina-
mide (AUC = 0.864, Fig. 4a), then glycine (AUC = 0.735, 
Fig. 4c). Combined as a panel (Fig. 4d), these biomarkers 
had a good diagnostic ability for mortality or need for 
RRT (AUC = 0.858).

Discussion
In this study, we identified 3 predictive urinary biomark-
ers of mortality or need for renal replacement therapy in 
combat casualties: lactate, 1-methylnicotinamide, and 
glycine. These 3 metabolites are also associated with 
AKI stage. We investigated the relationships and roles 
these metabolites have to each other, to combat trauma, 
and to AKI through literature reviews and pathway 
identification.

Metabolites and pathways
To identify the pathways involved and to determine 
the relationships between the metabolites that dis-
tinguished between disease severity and mortality/

Fig. 1  Analysis for mortality and renal replacement therapy. a PLS-DA 
scores plot of urine samples collected from patients who reached 
the endpoint of mortality or RRT (mortality/RRT, square, n = 12) or 
who survived or did not need RRT (Survived/NoRRT, circle). Two (2) 
of the patients in the mortality/RRT group did not have or develop 
AKI. Each circle and square represents a urine sample. The ellipses 
represent the 95% confidence interval for the groups. b Loadings plot 
for mortality and RRT. Loadings show how metabolites contribute to 
separation seen in the scores plot. PC principal component, RRT​ renal 
replacement therapy

Table 4  Two-component VIP Scores and p values for Mortality 
and RRT​

The table includes the metabolites/biomarkers with the top 10 VIP scores 
(bolded) in addition to metabolites with significant p values (p < 0.05, bolded) for 
mortality and RRT. Metabolites are ordered by VIP score. RRT​ renal replacement 
therapy

Metabolite/biomarker VIP score p value

Lactate 3.78 < 0.001
Glucose 3.66 < 0.001
1-Methylnicotinamide 3.45 < 0.001
2-Hydroxybutyrate 2.55 0.008
Glycine 2.37 0.01
Pyruvate 2.20 0.02
2-Hydroxyvalerate 2.09 0.04
1,6-Anhydro-ß-D-Glucose 2.07 0.006
Threonine 2.00 0.005
Myo-Inositol 1.76 0.07
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RRT, we referenced the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) Pathway Database (Kanehisha 
Laboratories, Japan), Human Metabolome Data-
base (HMDB), The Metabolomics Innovation Center, 
Canada), and reviewed published literature. Metabo-
lites included in the schematic (Fig.  5) were either 
a top 10 VIP metabolite or were statistically signifi-
cant (p < 0.05). Based on these results, we propose 5 
pathways that may be involved in patient outcomes: 
gut microbiome metabolism, glycolysis, TCA cycle, 
the methionine and folate cycles, and the NAD+ sal-
vage pathway (Fig. 5) [16–21]. We offer some potential 

explanations on why these metabolite levels might be 
altered.

Gut microbiome metabolism
Research of the gut microbiome has expanded exponen-
tially over the recent years, and we are constantly finding 
new links between the gut microbiome and other organ 
systems. Although limited, research has been published 
about the interactions between the intestinal microbi-
ota and kidneys [22–25]. The gut microbiome produces 
compounds such as indoles (indoxyl sulfate and indole-
3-acetate), hippurate, and phenylacetylglycine, which are 
normally excreted in the urine and non-toxic [20, 23, 24]. 
However, when there is dysbiosis, or microbial imbal-
ance, these compounds are produced at an increased rate 
[24]. An accumulation of these uremic toxins in the kid-
neys can cause inflammation and damage. In our study, 
the uremic toxins indoxyl sulfate, indole-3-acetate, hip-
purate, and phenylacetylglycine were associated with the 
moderate-severe AKI group (Fig. 2, Table 5). These toxins 
alone might cause kidney disease or exacerbate an exist-
ing kidney disease [24, 25]. However, AKI could lead to 
an accumulation of these toxins as well [24, 25]. Either 
way, it has been suggested that part of the treatment and 
prevention for kidney diseases is controlling the dysbiosis 
through pre/probiotics or microbiome transplants so that 
fewer toxins are being produced [23].

Dysbiosis in this patient population may have been 
caused by combat injury. A few studies have shown that 

Fig. 2  Analysis for acute kidney injury (AKI) stage. a PLS-DA scores 
plot of urine samples collected from patients who were AKI stages 
0–1 (none-mild, circle) or stages 2–3 (moderate-severe, square, 
n = 10). Each circle and square represents a urine sample. The ellipses 
represent the 95% confidence interval for the groups. b Loadings 
plot for AKI stage. Loadings show how metabolites contribute to 
separation seen in the scores plot. PC principal component

Table 5  Two-component VIP Scores and p values for AKI Stage

The table includes the metabolites/biomarkers with the top 10 VIP scores 
(bolded) in addition to metabolites with significant p values (p < 0.05, bolded) for 
AKI stage. Metabolites are ordered by VIP score

Metabolite/biomarker VIP score p value

1-Methylnicotinamide 2.92 < 0.001
Lactate 2.73 < 0.001
Glycine 2.32 0.06

Citrate 2.27 0.09

3-Hydroxyisovalerate 2.09 0.13

Hippurate 1.95 0.04
Histidine 1.89 0.3

Xanthosine 1.86 0.1

3-Indoxylsulfate 1.82 0.05
Tartrate 1.80 0.02
Threonine 1.78 0.02
Phenylacetylglycine 1.72 0.04
1,6-Anhydro-ß-D-Glucose 1.71 0.03
Glucose 1.66 0.002
Pyruvate 1.62 0.05
Indole-3-Acetate 1.36 0.05
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traumatic injury causes a significant change in the intesti-
nal microbiome, and this change can happen in less than 
72  h. Even though these studies investigated different 
forms of traumatic injury (burn, traumatic brain injury 
(TBI), or blunt/penetrating trauma without TBI), they 
all saw significant increases in aerobic bacteria, such as 
Enterobacteria and Enterococci species [26–28]. These 
species were also significantly increased in patients with 
chronic kidney disease (CKD) and end stage renal disease 
(ESRD) [23].

Glycolysis and TCA cycle
Glucose production is central to the metabolic response 
to trauma [16]. Glucose is used in glycolysis to produce 
pyruvate, which is then used for the TCA cycle. In our 
data, significant (p < 0.05) increases in glucose and pyru-
vate levels were associated with mortality or the need 
for RRT. Because this group had more severe trauma 
(Table  1), an upregulated metabolic response would be 
expected compared to the group who survived or did not 
need RRT.

The TCA cycle produces products used in oxidative 
phosphorylation, which makes ATP and requires oxy-
gen. In this study, the patient population suffered severe 
blood loss and hemorrhagic shock from combat injury, 
which means there most likely was not enough oxygen 
to sustain aerobic metabolism. Therefore, anaerobic 
metabolism is likely upregulated, leading to increased 
lactate levels [29]. This is supported by Table  1: the 
group of patients in the mortality/RRT group had a sig-
nificantly higher percentage of patients receive massive 
transfusions (p = 0.006), had significantly higher average 
injury severity scores (p = 0.002), and significantly higher 
median serum lactate levels (p < 0.001). Additionally, lac-
tate levels were significantly higher in patients who had 
adverse outcomes (Fig. 3b).

During anaerobic production of ATP, glucose is still 
converted to pyruvate via glycolysis, which converts 
NAD+ into NADH. However, instead of proceeding to 
the TCA cycle, pyruvate is used to make lactate (Fig. 6). 
The conversion of pyruvate to lactate uses NADH to 
make NAD+, which can be used in glycolysis. This pro-
cess, lactic acid fermentation, is crucial to sustain the 
NAD+ pool that is used for glycolysis in times of limited 
oxygen supply [30].

Methionine and folate cycles
Mortality/RRT patients had significantly lower levels 
of glycine (p < 0.05) and significantly higher levels of 
2-hydroxybutyrate (p < 0.05) compared to patients who 
survived or did not need RRT (glycine Fig.  3c-2-hy-
droxybutyrate Additional file  6). These findings are 
similar in other studies of traumatic injury and sug-
gests that glycine and 2-hydroxybutyrate are biomark-
ers of oxidative stress. In a study of traumatic brain 
injury, Dash et al. discovered that patients with severe 
and mild TBI had significantly increased levels of 
2-hydroxybutyrate and significantly decreased levels of 
glycine in their plasma compared to heathy volunteers’ 
plasma [31]. In a study of burn injury using a porcine 
model, Hendrickson et  al. reported that 2-hydroxybu-
tyrate was significantly increased and glycine was sig-
nificantly decreased over a 72 h period after burn injury 
[7]. In a rat model of ischemic acute kidney injury, Fox 
et  al. found that glycine was significantly reduced in 
the AKI rats 24 h after injury compared to baseline and 
when comparing the sham rats to the AKI rats at 24 h 
[32]. Although these data were from plasma and our 
analysis was done in urine, the findings for 2-hydroxy-
butyrate and glycine were similar.

Glycine is used in the production of glutathione, a 
key antioxidant produced from the methionine cycle 
that eliminates reactive oxygen species (Fig. 5) [18]. In 
times of severe oxidative stress as with combat injury, 
upregulation of glutathione production has been shown 
to occur at a faster rate than the synthesis of glycine 
[18, 32]. This might explain why glycine levels are sig-
nificantly lower in the mortality/RRT patients (Fig. 3c). 
Of note, glutathione was not identified in our urine 
samples. Upregulation of α-ketobutyrate production 
occurs during times of oxidative stress as well, and 
2-hydroxybutyrate is a by-product of α-ketobutyrate 
production (Fig.  5) [19]. Thus, the increased produc-
tion of α-ketobutyrate may cause an accumulation of 
2-hydroxybutyrate.

Another relevant reaction of the methionine cycle 
is the conversion of S-adenosylmethionine (SAM) to 
S-adenosylhomocysteine (SAH) using the enzyme 
nicotinamide N-methyltransferase (NNMT) (Fig.  5) 
[18]. This reaction is involved in another pathway: the 
NAD+ salvage pathway.

Fig. 3  Boxplots of 1-methylnicotinamide, lactate, and glycine and their relationship to outcomes. Metabolite concentrations were normalized by 
urine output, log-transformed and autoscaled. Boxplots were created using values for the median and interquartile range of each metabolite for 
each group. a Boxplots for 1-methylnicotinamide levels by mortality/RRT and AKI stage. b Boxplots for lactate levels by mortality/RRT and AKI stage. 
c Boxplots for glycine levels by mortality/RRT and AKI stage. ***p < 0.001; *p < 0.05; RRT​ renal replacement therapy

(See figure on next page.)
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NAD+ salvage pathway
NAD+ is used in the TCA cycle to make NADH for 
oxidative phosphorylation and when glycolysis is 
upregulated during times of oxidative stress to make 
ATP. NAD+ is also used by sirtuins. Sirtuins regulate 
energy metabolism and are NAD+-dependent enzymes 
that are involved in many pathways such as lipid 
metabolism, oxidative stress, urea cycle, TCA cycle, 
and amino acid metabolism [33]. Two pathways can 

synthesize NAD+: de novo synthesis and the salvage 
pathway (Fig. 7). 

The de novo pathway synthesizes NAD+ from tryp-
tophan while the salvage pathway uses Vitamin B3 com-
pounds such as nicotinamide to make NAD+. Until 
recently, the de novo pathway was thought to be a minor 
contributor to intracellular NAD+ levels. However, in 
a recent study, Poyan Mehr et  al. suggests that the de 
novo pathway plays a bigger role in NAD+ production 

Fig. 4  Receiver operating characteristic (ROC) curves for mortality/RRT. a 1-methylnicotinamide (AUC = 0.864), b lactate (AUC = 0.901), c glycine 
(AUC = 0.735), and d all 3 (AUC = 0.858). AUC​ area under the curve
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and AKI risk [21]. The authors showed that in ischemic 
AKI, levels of the enzyme quinolinate phosphoribosyl-
transferase (QPRT) were reduced. This enzyme is the 
last step in the de novo pathway, converting quinoli-
nate into NAD+. The downregulation of this enzyme 

caused significant decreases in renal NAD+ levels and an 
increased risk for adverse outcomes [21]. However, there 
may have been upregulation of the salvage pathway to 
replenish the NAD+ levels.

The kidneys readily convert nicotinamide into NAD+ 
via the salvage pathway which tightly regulates nicotina-
mide levels, keeping them low. The conversion of nico-
tinamide to nicotinamide mononucleotide produces the 
by-product 1-methylnicotinamide, which is transported 
out of the cell and excreted in the urine (Fig.  7) [33]. 
Nicotinamide N-methyltransferase (NNMT), the enzyme 
that converts SAM to SAH, is used to make 1-methylni-
cotinamide from nicotinamide (Fig. 5) [34]. As discussed 
earlier, the methionine cycle is upregulated during times 
of oxidative stress to make more glutathione. This means 
increased NNMT activity to make SAM into SAH. Dur-
ing AKI, if the de novo pathway is downregulated then 
there may be upregulation of the salvage pathway to 
sustain NAD+ levels. This would mean more nicotina-
mide is being used to make NAD+, which means more 
1-methylnicotinamide is being produced by NNMT as 

Fig. 5  Relationship of various metabolic pathways for AKI and combat injury. Metabolites included in the schematic were either a top 10 VIP 
metabolite or were statistically significant (p < 0.05). Metabolic pathways: glycolysis, TCA cycle, folate and methionine cycles, Cori and Cahill cycles, 
gut microbe metabolism, and NAD+ salvage pathway. Bolded metabolites were identified in the 1H-NMR analysis. Metabolites in green were 
significantly higher in patients who reached the endpoint or mortality/RRT and/or had more severe AKI. Metabolites in red were significantly lower 
in patients who reached the endpoint or mortality/RRT and/or had more severe AKI

Fig. 6  Simplified pathway of lactic acid fermentation. This anaerobic 
metabolism occurs when there is not enough oxygen to run the TCA 
cycle and oxidative phosphorylation. Glycolysis converts glucose to 
pyruvate, producing ATP and NADH. Pyruvate makes lactate instead 
of going into the TCA cycle. This reaction produces NAD+ from 
NADH. Adapted from Reference [30]
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well. The use of NNMT in the methionine cycle (oxida-
tive stress) and salvage pathway (ischemic AKI) might 
explain why 1-methylnicotinamide was significantly 
increased in the mortality/RRT patients and patients who 
had moderate-severe AKI.

1‑Methylnicotinamide, lactate, and glycine as biomarkers 
of AKI severity and predictive markers of mortality 
and renal replacement therapy
Of the 73 metabolites identified in this study, we identi-
fied 1-methylnicotinamide, lactate, and glycine as predic-
tive biomarkers for mortality or need for RRT at time of 
admission and as biomarkers associated with AKI sever-
ity. When comparing the ROC curves for the metabo-
lites, it was not surprising that lactate had a high AUC 
(Fig. 4b, AUC = 0.901) because lactate levels are strongly 
associated with trauma severity [27, 35, 36]. The mor-
tality/RRT group had more severe trauma indicated by 
significantly higher median serum lactate levels, median 
injury severity scores, and percentage of patients requir-
ing a massive transfusion (Table 1). Therefore, lactate is a 
good predictor for mortality or need for RRT, and is not 
specific to AKI.

1-methylnicotinamide is perhaps the most promising 
novel biomarker (Fig. 4a, AUC = 0.864). It is significantly 
(p < 0.05) elevated in mortality/RRT patients, in those 
with more severe disease, and in those with more severe 
injuries (Fig. 3a, Additional file 5B). More work must be 
done to elucidate the relationships between 1-methyni-
cotinamide, the methionine cycle, oxidative stress, and 
poor outcomes in AKI and critically ill patients.

The AUC for glycine was not as high as lactate and 
1-methylnicotinamide, however, it bears considera-
tion as a biomarker that is decreased in patients with 
more severe disease and worse outcomes (Fig.  4c, 

AUC = 0.735). Glycine was significantly decreased in the 
mortality/RRT group, and may be a useful biomarker 
of oxidative stress in traumatic injury that can predict 
adverse outcomes and is not unique to AKI [7, 31, 32].

We evaluated a panel of these metabolic biomarkers 
(lactate, 1-methylnicotinaide, and glycine) and found 
that it is predictive for mortality and RRT (Fig.  4d, 
AUC = 0.858). In addition to these 3 metabolites, Stewart 
et al. identified protein biomarkers that were significantly 
associated with mortality and RRT as well [1]. The bio-
markers identified in this study and in the Stewart et al. 
study may be used to enrich prediction models for mor-
tality and renal replacement therapy.

Limitations and future directions
This observational pilot study using data analyzed in a 
retrospective fashion had several limitations. We were 
limited to patients who likely developed AKI from a sin-
gle condition (trauma/combat injury), although AKI can 
be caused by a variety of other conditions such as medi-
cations and heart disease [4]. Of the patients diagnosed 
with AKI, roughly 50% had been diagnosed with AKI 
prior to the urine draw. Sixty percent of the patients in 
the moderate-severe AKI group had been diagnosed with 
AKI prior to the urine draw. Therefore, we could not 
determine the diagnostic or prognostic ability of these 
biomarkers since urine draws did not exclusively occur 
before or after an AKI diagnosis. Additionally, the study 
population was almost 100% male and most patients 
were under the age of 40. This does not allow us to 
evaluate predictive biomarkers based on age or sex. The 
study population was small, which limited the statisti-
cal power of the study and required the use of groups for 
the outcomes, such as mortality/RRT and grouping AKI 
stages into moderate-severe and none-mild. Due to the 

Fig. 7  Simplified de novo NAD+ and NAD+ salvage pathways. De novo pathway (blue arrows) makes NAD+ from tryptophan and quinolinate. 
The salvage pathway (green arrows) makes NAD+ from nicotinamide and nicotinamide mononucleotide. 1-methylnicotinamide is a by-product of 
the salvage pathway. Adapted from reference [21]
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exploratory nature of this study, multiple comparisons 
testing was not performed. This study did not have any 
long term follow up and not all data was collected pro-
spectively [1].

For future studies, there should be a more diverse 
patient population that encompasses multiple suspected 
causes of AKI and different patient age and sex. Future 
studies should validate 1-methylnicotnamide as a prog-
nostic biomarker of mortality and renal replacement 
therapy, either through targeted or untargeted analy-
sis. A subsequent study should further investigate the 
prognostic or diagnostic ability of the metabolites iden-
tified in this study for AKI stage. In a related note, AKI 
diagnosis did not have strong model statistics, but AKI 
severity did. This could indicate that mild AKI has simi-
lar characteristics and outcomes to patients who do not 
have AKI, and moderate-severe AKI patients have similar 
characteristics and outcomes. This may warrant further 
investigation. Larger studies are necessary to determine 
how these metabolites can be utilized in risk prediction 
models such as a study that performs a targeted analysis 
for 1-methylnicotinamide, lactate, and glycine in a popu-
lation of surgical patients or civilian trauma patients.

Conclusion
In this study, we used proton nuclear magnetic reso-
nance (1H-NMR) spectroscopy to identify urinary meta-
bolic biomarkers associated with AKI stage or mortality 
or need for renal replacement therapy. PLS-DA scores 
and loadings plots of urine metabolite samples showed 
separation between the groups for the outcomes of AKI 
stage and mortality/RRT. Several pathways appeared to 
be involved in the metabolic response to AKI, includ-
ing gut microbiome metabolism, glycolysis, TCA cycle, 
the methionine and folate cycles, and the NAD+ salvage 
pathway. Three metabolites, lactate, 1-methylnicotina-
mide, and glycine, were identified as potential predictive 
biomarkers of mortality and RRT, and their association 
to AKI severity was evaluated. Moreover, this study sug-
gests that 1-methylnicotinamide is a novel biomarker 
associated with adverse AKI outcomes. Although this 
study has provided intriguing results, larger studies are 
necessary to determine how these metabolites can be uti-
lized in risk prediction models.
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22) cis-aconitate, 23) citrate, 24) creatine, 25) creatine phosphate, 26) 
creatinine, 27) dimethylamine, 28) ethanolamine, 29) formate, 30) fucose, 
31) fumarate, 32) glucose, 33) glutamine, 34) glycine, 35) hippurate, 36) 
histamine, 37) histidine, 38) histamine, 39) hypoxanthine, 40) indole-
3-acetate, 41) isoleucine, 42) lactate, 43) lactose, 44) leucine, 45) lysine, 46) 
malonate, 47) methylguanidine, 48) methylmalonate, 49) myo-inositol, 
50) n-methylhydantoin, 51) n,n-dimethylglycine, 52) o-acetylcarnitine, 53) 
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doxine, 57) pyruvate, 58) sarcosine, 59) succinate, 60) tartrate, 61) taurine, 
62) threonine, 63) trigonelline, 64) trimethylamine, 65) trimethylamine 
n-oxide, 66) tyramine, 67) tyrosine, 68) urea, 69) valine, 70) xanthine, 71) 
xanthosine, 72) pi-methylhistidine, 73) tau-methylhistidine.

Additional file 3. Analysis for injury severity score (ISS). A) PLS-DA scores 
plot of urine samples collected from patients who had injury sever-
ity scores less than 25 (<25, circle) or greater than or equal to 25 (25≤, 
square). Each circle and square represents a urine sample. The ellipses 
represent the 95% confidence interval for the groups. B) Loadings plot for 
ISS. <25 = patients with an ISS less than 25, 25≤ = patients with an ISS 
greater than or equal to 25. Loadings show how metabolites contribute to 
separation seen in the scores plot.

Additional file 4. Analysis for acute kidney injury (AKI) diagnosis. A) 
PLS-DA scores plot of urine samples collected from patients who were 
diagnosed with AKI (yes, square) or not diagnoses with AKI (no, circle). 
Each circle and square represents a urine sample. The ellipses represent 
the 95% confidence interval for the groups. B) Loadings plot for AKI 
diagnosis. Loadings show how metabolites contribute to separation seen 
in the scores plot.

Additional file 5. Boxplots of 1-methylnicotinamide and the relationship 
to ISS and AKI diagnosis. Metabolite concentrations were normalized by 
urine output and log-transformed and autoscaled. Boxplots were created 
using values for the median and interquartile range of each metabo-
lite for each group. A) Boxplot shows 1-methylnicotinamide levels are 
significantly higher in patients who were diagnosed with AKI compared to 
those who were not diagnosed with AKI. B) Boxplot shows 1-methylnico-
tinamide levels are significantly higher in patients who have higher injury 
severity scores (25≤) versus those with lower injury severity scores (<25). 
ISS = injury severity score; AKI = acute kidney injury. * = p<0.05.

Additional file 6. Boxplot of 2-hydroxybutyrate and the relationship 
to mortality/RRT. Boxplots were created using values for the median 
and interquartile range of each metabolite for each group. Metabolite 
concentrations were normalized by urine output, log-transformed and 
autoscaled. Boxplot shows 2-hydroxybutyrate levels are significantly 
higher in mortality/RRT patients versus patients who survived or did not 
need RRT. RRT = renal replacement therapy. * = p<0.05.
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