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Abstract 

The respiratory system reacts instantaneously to intrinsic and extrinsic inputs. This adaptability results in significant 
fluctuations in breathing parameters, such as respiratory rate, tidal volume, and inspiratory flow profiles. Breath‑
ing variability is influenced by several conditions, including sleep, various pulmonary diseases, hypoxia, and anxiety 
disorders. Recent studies have suggested that weaning failure during mechanical ventilation may be predicted by low 
respiratory variability. This review describes methods for quantifying breathing variability, summarises the conditions 
and comorbidities that affect breathing variability, and discusses the potential implications of breathing variability for 
anaesthesia and intensive care.
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Background
The control of breathing involves a complex system that 
balances the opposing goals of efficiency, redundancy, 
responsiveness, and stability [1]. It is characterised by 
myriad inputs, internal pacemakers, positive and nega-
tive feedback loops, and nonlinear interactions between 
different components (Fig. 1). This results in fluctuations 
in breathing parameters, including the respiratory rate, 
tidal volume, and airflow profiles (Table 1).

If this regulation is too rigid, respiratory variability is 
low or absent, and the respiratory system cannot ade-
quately react to stimuli. In contrast, if the respiratory sys-
tem is overreacting to internal and external stimuli, the 
system shows large fluctuations and loses control.

The exact determinants of breathing variability are 
not precisely known; however, it has been shown that 
the increase and decrease in breathing variability are 
strongly associated with pathological states. Normal 

breathing variability is influenced by several factors, such 
as aging, cognitive load, sleep pattern, and hypoxia, as 
well as medical conditions such as anxiety, obstructive or 
restrictive lung disease, and arterial hypertension. During 
anaesthesia and intensive care, additional factors, such as 
drugs and the effects of mechanical ventilation, may also 
influence breathing variability.

This review describes the methods for quantifying 
breathing variability, summarises the conditions and 
comorbidities that affect breathing variability, and dis-
cusses the potential implications of breathing variability 
for anaesthesia and intensive care.

Normal respiratory variability
The regulation of breathing facilitates adequate gas 
exchange for metabolic needs. The impulses for inspi-
ration and expiration are generated within the respira-
tory centre in the medulla oblongata after receiving and 
processing input from various subsystems (Fig.  1 and 
Table  2). Consequently, respiration is characterised by 
constant fluctuations in rate, rhythm, depth, and dura-
tion [2, 3]. For instance, this physiological variability 
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may range between 19 and 34% for tidal volume and 
between 16 and 22% for respiratory rate, expressed as 
the coefficient of variation, in awake persons (Table  3). 

The respiratory system receives input mainly from cen-
tral and peripheral chemoreceptors, mechanoreceptors 
within the airways and alveoli, locomotion receptors 
of muscles and joints, and the (para)limbic system. The 
breathing pattern may be influenced to an extent and vol-
untarily controlled, shortly, via input from the cerebral 
cortex. For this purpose, the forebrain sends signals to 
the respiratory centre via independent pathways, over-
ruling other inputs. Further factors include afferent input 
from the vagus nerve and its branches, such as the supe-
rior laryngeal nerves. External vagal stimulation has been 
shown to decrease respiratory rate [4], while stimulation 
of the superior laryngeal nerves may affect the chest wall 
and airway muscles [5]. Inspiratory time and tidal volume 
remain strongly correlated, suggesting a constant flow at 
a steady chemical drive [6, 7].

Different models have been developed to predict 
respiratory variability. One of the first models used a 
semi-mechanistic approach based on feedback loops of 

Fig. 1  Input to the respiratory centre in the medulla oblongata and the pons

Table 1  Tidal breathing parameters

RR Respiratory rate

TI Inspiratory time

TE Expiratory time

Ttot Total breath cycle time

Ti/Ttot Ratio inspiratory time: total respiratory time

VT Tidal volume

VT/Ti Mean inspiratory flow

MV Minute ventilation

VE CO2 Expired CO2 volume per breath

FE CO2 Mixed expired CO2 fraction per breath

Fet CO2 End-expiratory CO2 fraction
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measured (cardiac output and mixed venous blood CO2 
partial pressure) and estimated parameters (CO2 sen-
sitivity, mean lung volume for CO2, circulating time) 
and integrated the result into a compartmental model 
using differential Eqs. [8]. For these calculations, several 
assumptions were necessary, including constant hemo-
dynamic parameters, absence of intracardiac or pulmo-
nary shunting, and instant intra-alveolar equilibration of 
CO2 and oxygen tensions. Another more recent approach 
used spectral analysis of all variables to predict oscillatory 
rhythmicity [9]. This model incorporated inspiratory and 
expiratory times and volumes, as well as end-tidal CO2 
partial pressures and driving parameters. Of note, both 
models were based on measurements of healthy partici-
pants and can be extrapolated to patients with caution.

Quantification of respiratory variability
Different methods are available for the quantification of 
breathing variability, including quantitative time series 
analysis, detrended fluctuation analysis, entropy analysis, 
frequency distribution analysis, spectrum analysis, and 
power-law analysis [1]. In this section, we focus on the 
first three techniques.

Quantitative time series analysis
A quantitative time series analysis evaluates the standard 
deviation or interquartile range over time, such as the 
standard deviation of tidal volume or respiratory rate. 
The coefficient of variation (CV), defined as the ratio of 
the standard deviation to the mean, shows the extent 
of variability in relation to the mean of the data series 
(Eq. 1). The coefficient of variation is useful for compar-
ing datasets with different units or means. It can be used 
as a measure of short- and long-term variations, depend-
ing on the subsets of data analysed. The extent of vari-
ability between successive breaths was calculated as the 
root mean square of successive differences (RMSSD) 
over consecutive breaths (short-term variability, Eq. 2). A 
quantitative time series analysis shows the overall degree 
of variability or “quantitative variability”.

Quantitative time series analysis: CV: coefficient of 
variation; RMSSD: root mean square of successive dif-
ferences; N: number of samples; x : measured variable; x : 
mean of x.

Detrended fluctuation analysis
While quantitative time series analysis is used to measure 
short- and long-term variations, detrended fluctuation 
analysis (DFA) is used to detect long-range correlations 
in time series [10, 11]. We will address detrended fluc-
tuation analysis as “correlated variability.” It is based 
on the assumption that variations are due to extrinsic 
stimuli that cause local effects or the intrinsic dynam-
ics of the system causing long-range correlations. To 
quantify the intrinsic variability of the system, the local 
effects are subtracted. The algorithm consists of several 
steps, starting with a time series of the measured vari-
able x , such as tidal volume or respiratory rate. A new 
integrated time series XT is calculated by summing the 
differences between the individual value xi and the aver-
age x for all values (Eq. 3). Subsequently, this trend func-
tion XT is divided into epochs of length n , and the local 
least squares fit (local trend) YT within this time window 
is subtracted. The fluctuation F(n) is then calculated as 
the root mean square of the integrated and detrended 
time series (Eq.  4). Finally, this process is repeated over 
different epochs n and a log–log graph of F(n) against n 
is constructed. The slope of a straight line fit yields the 
parameter α, which characterises long-term correlations 
(Eq.  5). While a higher α-value of 0.5 indicates a time 
series without any long-term correlations, an increased 
α-value would suggest the presence of such correlations. 
One major disadvantage of DFA is that it requires large 

(1)CV(x) =

√

1
N

∑

(x−x)2

x

(2)RMSSD(x) =

√

1
N

N
∑

i=1

(|xi−1 −xi|
2)

Table 2  Control of spontaneous respiration

Location Stimulus Pathway

Central chemoreceptors Ventral medulla CSF pH Direct effect

Peripheral chemoreceptors Bifurcation of common carotid artery, aortic 
arch

Arterial pH, PaO2, PaCO2, Glossopharyngeal nerve, vagal nerve

Mechanoreceptors Tracheal and bronchial muscle spindles Stretching of lung parenchyma Vagal nerve

Airways and alveoli Temperature, dust, noxious gases Vagal nerve

Locomotion receptors Muscles and joints Limb movement Spinal pathways

Other Cerebral cortex and (para)limbic system Emotion, pain, arousal Monosynaptic connections

Cerebral cortex Conscious/voluntary control Corticospinal pathways
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Table 3  Conditions affecting respiratory variability

Factor Reference Respiratory measurements Measure of variability

Age Tobin et al. [26] Inductive plethysmography CV Young versus old subjects:
RR: 0.16 versus 0.17
TV: 0.22 versus 0.28*
MV: 0.22 versus 0.27*
IT: 0.19 versus 0.21

Peng et al. [11] Inductive plethysmography DFA (α) Healthy young versus healthy 
elderly subjects (male):

BT: 0.68 ± 0.07 versus 0.60 ± 0.08*
Healthy young versus healthy 

elderly subjects (female):
BT: 0.70 ± 0.07 versus 0.67 ± 0.06

Sleep Hudgel et al. [16] Nasal CPAP mask, pneumot‑
achography

CV Awake versus NREM sleep 
(elderly):

TV: 0.24 ± 0.04 versus 0.25 ± 0.04
MV: 0.20 ± 0.02 versus 0.25 ± 0.05
IT: 0.15 ± 0.02 versus 0.11 ± 0.01
BT: 0.15 ± 0.02 versus 0.10 ± 0.05*
Awake versus NREM sleep 

(young):
TV: 0.23 ± 0.04 versus 0.11 ± 0.02*
MV: 0.14 ± 0.02 versus 0.10 ± 0.11
IT: 0.17 ± 0.02 versus 0.08 ± 0.01*
BT: 0.16 ± 0.02 versus 0.08 ± 0.01*

Rostig et al. [17] Full-face mask, pneumotach‑
ography

CV NREM versus REM sleep:
TV: 0.11 ± 0.01 versus 0.28 ± 0.08*
MV: 0.11 ± 0.03 versus 

0.21 ± 0.09*
RR: 0.09 ± 0.03 versus 0.20 ± 0.04*
IT: 0.10 ± 0.02 versus 0.15 ± 0.03

DFA, STC (α1) TV: 0.89 ± 0.09 versus 1.18 ± 0.14
MV: 0.96 ± 0.10 versus 1.18 ± 0.16
RR: 0.79 ± 0.06 versus 0.95 ± 0.14
IT: 0.68 ± 0.04 versus 0.76 ± 0.10

DFA, LTC (α2) TV: 0.51 ± 0.09 versus 0.81 ± 0.15
MV: 0.51 ± 0.09 versus 0.77 ± 0.13
RR: 0.57 ± 0.05 versus 0.85 ± 0.12
IT: 0.55 ± 0.07 versus 0.76 ± 0.11

Hypertension Anderson et al. [30] Inductive plethysmography RMSSD Lower versus upper tertile of 
blood pressure:

TV: 147 ± 38 versus 219 ± 22*
MV: 1.84 ± 0.32 versus 

1.91 ± 0.46*
RR: 3.56 ± 0.50 versus 4.72 ± 0.73*

Children with anxiety disorder Pine et al. [32] Spirometry and respiratory 
canopy

SD Anxiety disorder versus normal 
controls:

TV: 98 ± 101 versus 39 ± 27*
MV: 2.0 ± 2.0 versus 0.8 ± 0.4*
RR: data not reported, P = 0.06

Panic disorder Martinez et al. [34] Spirometry and respiratory 
canopy

SD Panic disorder versus normal 
controls:

TV: 191 ± 184 versus 84 ± 43*
MV: 2.36 ± 1.80 versus 

1.37 ± 0.68*
RR: 4.59 ± 2.75 versus 3.58 ± 2.43

MSSD TV: 308 ± 358 versus 144 ± 152*
MV: 4.27 ± 5.05 versus 

2.12 ± 1.84*
RR: 6.90 ± 7.75 versus 5.38 ± 5.13
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Table 3  (continued)

Factor Reference Respiratory measurements Measure of variability

Yeragani et al. [36] Inductance plethysmography CV Panic disorder versus normal 
controls:

TV: 0.54 ± 0.22 versus 0.33 ± 0.15 
(standing)*

RR: 0.39 ± 0.17 versus 0.45 ± 0.10
TV: 0.23 ± 0.10 versus 0.32 ± 0.27 

(supine)
RR: 0.29 ± 0.12 versus 0.32 ± 0.11

LLE Panic disorder versus normal 
controls:

0.10 ± 0.01 versus 0.086 ± 0.02 
(standing)*

0.09 ± 0.02 versus 0.09 ± 0.02 
(supine)

ApEn Panic disorder versus normal 
controls:

0.40 ± 0.13 versus 0.27 ± 0.12 
(standing)*

0.30 ± 0.0 versus 0.29 ± 0.12 
(supine)

Cognitive load Vlemincx et al. [21] Inductance plethysmography CV Complex arithmetic task versus 
baseline:

TV: 0.36 ± 0.16 versus 0.24 ± 0.14*
MV: 0.26 ± 0.08 versus 

0.20 ± 0.08*
RR: 0.18 ± 0.08 versus 0.16 ± 0.07

AR Complex arithmetic task versus 
baseline:

TV: 0.11 ± 0.23 versus 0.20 ± 0.18*
MV: 0.30 ± 0.24 versus 0.28 ± 0.18
RR: 0.12 ± 0.15 versus 0.26 ± 0.20*

Grassmann et al. [22] Nasal capnometry CV High demanding mental multi-
task versus baseline:

RR: 0.13 ± 0.05 versus 0.19 ± 0.09*

AR High demanding mental multi-
task versus baseline:

RR: 0.05 ± 0.11 versus 0.13 ± 0.18*

COPD Loveridge et al. [37] Inductance plethysmography CV COPD versus normal controls:
TV 0.253 versus 0.337*
MV 0.221 versus 0.280*
RR 0.170 versus 0.220
IT 0.178 versus 0.229*

Asthma Hmeidi et al. [38] Structured light plethysmog‑
raphy

IQR Asthma (prebronchodilator) 
versus normal controls:

RR: 3.93 (2.57) versus 3.32 (2.2)
IE50: 0.63 (0.32) versus 0.47 

(0.18)*
Asthma (prebronchodilator) 

versus asthma (postbroncho‑
dilator):

RR 3.93 (2.57) versus 4.62 (2.34)
IE50: 0.63 (0.32) versus 0.60 

(0.38)*

Asthma Seppa et al. [39] Impedance pneumography CSRmin High-risk group versus low-risk 
group:

Flow-volume curve 0.995 
[0.984–0.999] versus 0.998 
[0.994–0.999]*

NLmin High-risk group versus low-risk 
group:

Flow signal 14.3 [0.00–48.7] 
versus 30.3 [0.00–42.7]*
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Table 3  (continued)

Factor Reference Respiratory measurements Measure of variability

Restrictive lung disease Brack et al. [42] Inductance plethysmography CV Restrictive lung disease versus 
normal controls:

TV 0.22 ± 0.05 versus 0.50 ± 0.20*
IT 0.22 ± 0.05 versus 0.33 ± 0.12*
ET 0.22 ± 0.07 versus 0.41 ± 0.19*
MV 0.24 ± 0.06 versus 

0.42 ± 0.16*

AR TV 0.43 ± 0.14 versus 0.23 ± 0.12*
IT 0.25 ± 0.17 versus 0.21 ± 0.14
ET 0.28 ± 0.13 versus 0.12 ± 0.15*
MV 0.39 ± 0.16 versus 0.27 ± 0.14

Lung dysmaturity in infancy Fouzas et al. [43] Full face mask, flowmeter CV Preterm non-CLDI infants versus 
term infants:

TV 0.09 ± 0.03 versus 0.09 ± 0.02
Preterm moderate/severe CLDI 

versus term infants:
TV 0.07 ± 0.02 versus 0.09 ± 0.02*

2D dispersion, Poincaré Preterm non-CLDI infants versus 
term infants:

TV 147 ± 82.2 versus 143 ± 64.3
Preterm moderate/severe CLDI 

versus term infants:
TV 58.9 ± 40.7 versus 143 ± 64.3*

3D dispersion, Poincaré Preterm non-CLDI infants versus 
term infants:

TV 1156 ± 906 versus 1073 ± 670
Preterm moderate/severe CLDI 

versus term infants:
TV 284 ± 253 versus 1073 ± 670*

Usemann et al. [44] Full face mask, flowmeter CV Preterm versus term infants:
Rint 20.2 ± 8.4 versus 29.6 ± 14.9*

After major abdominal surgery Van den Bosch et al. [56] Impedance pneumography CV RR versus TV: 0.21 ± 0.06 versus 
0.37 ± 0.12*

TV versus MV: 0.37 ± 0.12 versus 
0.41 ± 0.12*

Organ dysfunction syndrome 
in ICU

Bradley et al. [63] Capnography CV Before versus after sedation inter‑
ruption, low MODS:

RR 0.17 ± 0.08 versus 0.28 ± 0.16*
Before versus after sedation inter‑

ruption, high MODS:
RR 0.23 ± 0.12 versus 0.20 ± 0.12

RMSSD Before versus after sedation inter‑
ruption, low MODS:

RR 0.86 ± 0.53 versus 1.7 ± 1.3
Before versus after sedation inter‑

ruption, high MODS:
RR 1.3 ± 0.79 versus 1.0 ± 0.79*

ApEn Before versus after sedation inter‑
ruption, low MODS:

RR 0.48 ± 0.16 versus 0.46 ± 0.15
Before versus after sedation inter‑

ruption, high MODS:
RR 0.42 ± 0.16 versus 0.49 ± 0.17*

DFA, STC (α1) Before versus after sedation inter‑
ruption, low MODS:

RR 0.64 ± 0.19 versus 0.70 ± 0.15
Before versus after sedation inter‑

ruption, high MODS:
RR 0.69 ± 0.09 versus 0.68 ± 0.17
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datasets (i.e. more than 8000 data points) for meaningful 
interpretations [12].

Detrended fluctuation analysis: x(t) : measured varia-
ble, x : mean of x ; n : epoch length, Y (t) : local least-squares 
fit, N  : number of measurements, α : scaling component 
characterising the extent of long-term correlations.

Entropy analysis
Entropy analysis measures the degree of disorder or ran-
domness in the data. In other words, it quantifies the 
amount of “surprise” or “new information” introduced 
to an otherwise predictable system. Entropy analysis, 
therefore, reflects the degree of complexity or “infor-
mational variability.” This elegant analysis approach 
is often applied to thermodynamics, but it can also be 
used to analyse breathing irregularities [13, 14]. Data 
are considered more irregular and unpredictable when 
observed patterns are not followed by similar patterns. 
For this purpose, the entropy analysis algorithm evalu-
ates whether a sequence of data points of length m is 
similar to other sequences in the data within a specified 
tolerance r. Subsequently, the difference between the 
logarithmic frequencies of similar runs of length m and 
length m + 1 is measured. When the data contain several 
repetitive patterns, the approximate entropy (ApEn) is 
low; otherwise, the algorithm yields a higher ApEn. One 
shortcoming of the calculation of ApEn is its depend-
ency on the choice of sequence length m and tolerance 
r because other choices of m and r can lead to different 
conclusions on the randomness of the data.

(3)X(t) =
t
∑

i=1

|x(i)− x|

(4)F(n) =

√

1
N

N
∑

t=1

[X(t)− Y (t)]2

(5)F(n) ∝ nα

Approximate entropy analysis: r : similarity criterion; 
nim(r) : number of patterns that are similar within r ; m : 
pattern length; SN : sequence of N  measurements; Cm(r) : 
mean of all Cim(r) values; ApEn : approximate entropy.

Conditions and diseases influencing respiratory variability
Breathing variability is modified and influenced by sev-
eral conditions, such as sleep, cognitive function, age, 
hypoxia, and diseases (Table 3).

Sleep
In healthy participants, quantitative respiratory vari-
ability decreases during non-rapid eye movement 
(non-REM) sleep [15, 16]. In addition, breath-to-breath 
components display a strong relationship between one 
breath and another at a time lag of a few breaths (short-
term correlations). The regulation of respiratory timing 
and drive is characterised by additional long-term cor-
relations only during the transition from non-REM to 
REM sleep [17]. The quantitative variability of respiratory 
rate is augmented during REM sleep, compared to non-
REM sleep, but less prominent than during wakefulness 
[18]. The decreased quantitative variability of respiration 
during non-REM sleep is a result of an autoregressive 
process (i.e. breaths depend linearly on their previous 
values), as well as a result of periodic oscillations and 
uncorrelated white noise [19]. The observed breath-to-
breath dependence (autoregression) is likely caused by 
the central respiratory pattern generator, whereas peri-
odic oscillations are more likely to originate from chemi-
cal feedback systems [19]. It is unknown whether similar 
changes can be observed during sedation and anaesthesia 
with preserved spontaneous respiration.

(6)Cim(r) =
nim(r)

N−m+1

(7)ApEn(SN ,m, r) = ln Cm(r)
Cm+1(r)

Table 3  (continued)

Factor Reference Respiratory measurements Measure of variability

DFA, LTC (α2) Before versus after sedation inter‑
ruption, low MODS:

RR 1.17 ± 0.78 versus 0.33 ± 0.41
Before versus after sedation inter‑

ruption, high MODS:
RR 0.25 ± 0.22 versus 0.40 ± 0.35*

CV coefficient of variation, TV tidal volume, MV minute ventilation, IT inspiratory time, BT breath time, RR respiratory rate, DFA detrended fluctuation analysis, STC 
short-term correlations, LTC long-term correlations, (R)MSSD (root) mean square of successive differences, SD standard deviation, LLE largest Lyapunov exponent 
(a measure of chaos), ApEn approximate entropy (a measure of regularity), AR autocorrelation at one breath lag, COPD chronic obstructive pulmonary disease, 
IE50 thoracoabdominal displacement rate at 50% of inspiratory displacement divided by thoracoabdominal expiratory displacement date at 50% of expiratory 
displacement, CSRmin minimum curve shape correlation, NLmin minimum noise limit, ET expiratory time, CLDI chronic lung disease of infancy Rint airway resistance 
with interrupter technique, MODS multiple organ dysfunction syndrome* P < 0.05
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Cognitive load
Changes in cognitive activity also influence respiratory 
variability [20]. Arithmetic tasks under stressful condi-
tions significantly increased the quantitative variability 
of respiratory rate, tidal volume, and minute volume by 
13%, 50%, and 30%, respectively, compared with meas-
urements during restful watching of the documentary 
titled “The March of the Penguins” [21]. In another men-
tal load experiment, however, quantitative and correlated 
variability of respiratory rate was reduced by 30% when 
volunteers were exposed to multiple tasks while assess-
ing their perceptual speed, spatial orientation, and work-
ing memory capacity. Breathing variability was restored 
to its baseline values during the recovery period [22]. The 
duration and complexity of cognitive load have variable 
effects on respiratory variability.

Exercise
Increasing metabolic demands during physical exercise 
induces an increase in minute ventilation through the 
augmentation of the respiratory rate and tidal volume. 
However, the quantitative variability of the respiratory 
rate decreases during recumbent bicycle exercise [23]. 
The correlated variability also decreases, resulting in a 
more random pattern of breathing, which suggests that 
the respiratory control system may be operating in a less 
stable state during exercise [23]. The degree of athletic 
fitness altered the effect of exercise on breathing vari-
ability. In a cardiopulmonary exercise test at maximum 
oxygen consumption, sedentary volunteers showed a 40% 
higher quantitative variability of minute ventilation than 
professional football players from Brazil [24]. In patients 
with heart failure, a breathing pattern with cyclic fluctua-
tions in minute ventilation during incremental exercise 
(“exertional oscillatory ventilation”) is a strong predictor 
of poor prognosis and reflects advanced disease [25].

Age
Respiratory variability increases with age. Healthy older 
adults [60–81  years] showed greater quantitative vari-
ability than younger participants [21–50 years], especially 
during non-REM sleep [16, 26]. Asleep older adults more 
often show an increase in upper airway resistance, which 
produces breathing fluctuations caused by mechanical 
limitations contributing to this breath-to-breath vari-
ability of tidal volume [16]. A study of long-term correla-
tions (120 min) shows long-range correlations extending 
over hundreds of breathing cycles during sleep, and these 
correlations seem to degrade in older men [11]. The 
authors suggest that this loss of long-term correlations 
in breathing dynamics may be caused by intrinsic fac-
tors associated with aging such as neuronal dropout, loss 
of central signal integration, stiffening of the pulmonary 

parenchyma, and reduced chemoreceptor sensitivity. It 
is unknown whether these changes in quantitative and 
correlated variability of breathing are accompanied by 
changes in complexity or informational variability.

Hypoxia and high altitude
Specific changes in respiratory patterns are observed 
under hypoxic conditions [27, 28]. During the transition 
from normoxia to isocapnic hypoxia, the quantitative 
variability of minute ventilation increases by 70%, and 
that of tidal volume increases by 50%, without inducing 
periodic breathing [28]. This was mainly mediated by an 
increase in the random fraction, as the correlated vari-
ability decreased [28]. Hypoxic conditions at high alti-
tudes induced similar changes. The incidence of periodic 
breathing with apneic episodes and their duration also 
increased as a function of altitude in non-acclimatized 
participants [29]. Breathing patterns oscillate periodically 
between clusters of breaths and periods of short apnea 
during NREM sleep under hypobaric hypoxia [27]. This 
pattern increases the variability of breathing, quanti-
fied in terms of the coefficient of variation. This periodic 
breathing pattern does not occur during wakefulness or 
REM sleep and cannot be observed during normocapnia.

Arterial hypertension
In addition, arterial hypertension may influence breath-
ing variability. The quantitative variability of tidal volume, 
respiratory rate, and minute ventilation was significantly 
higher in a cohort of women at rest with elevated sys-
tolic blood pressure [30]. The incidence of apneic events 
(> 10 s) during resting wakefulness increased more than 
twofold in patients with elevated blood pressure, whereas 
the incidence of these breathing pauses did not differ dur-
ing overnight sleep. It has not been established if periodic 
breathing is a cause or consequence of long-term hyper-
tension; however, it has been hypothesised that increased 
sympathetic and/or decreased parasympathetic activity 
may account for the breathing pattern.

Endotoxin
The systemic inflammatory response to endotoxins 
induces alterations in respiratory frequency and minute 
ventilation, as well as the respiratory pattern [31]. Even 
though the overall quantitative variability remained unal-
tered, the correlated variability of respiratory rate was 
42% higher after exposure to endotoxins than placebo 
[31]. These changes were functions of changes in PaCO2, 
suggesting a role of chemical feedback loops. Interest-
ingly, ibuprofen suppressed the increase in the correlated 
behaviour of respiratory frequency.
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Anxiety
Marked differences in breathing variability have been 
reported in children and adolescents with anxiety dis-
orders, such as panic disorder [32, 33]. During rest-
ing wakefulness, patients at risk of panic attacks have a 
twofold higher quantitative variability of tidal volume 
than healthy controls. This difference persisted even 
after treatment [34]. In patients with hyperventilation 
disorder, there is an augmented degree of quantita-
tive variability and a concomitant augmentation in the 
complexity of tidal volume variability [35]. One study 
reported increased quantitative and informational res-
piratory variability in patients with panic disorder only in 
the standing (but not in the supine) position. The authors 
hypothesised that this difference may be attributed to a 
diminished vagal tone in patients with panic disorders 
[36].

Obstructive lung disease
Asthma and chronic obstructive pulmonary disease 
(COPD) affect breathing variability in different ways. 
Patients with COPD have higher quantitative variabili-
ties of minute ventilation and tidal volume than age-and 
sex-matched controls [37]. They have significantly fewer 
sighs; even after the exclusion of sighs from analysis, res-
piratory variability was lower in patients with COPD [37]. 
This reduced variability in breathing patterns may reflect 
changes in the mechanics of the lung and chest wall or 
neural adjustments in breathing control.

In contrast, the variability of respiration is increased 
in patients with asthma, and this effect is related to dis-
ease severity. The quantitative variability of tidal breath-
ing parameters in children with asthma aged 7–16 years 
was 25% greater than that in age-matched children, inde-
pendent of the use of a bronchodilator [38]. In young 
patients [3–7  years] with risk factors for asthma, com-
pared to a control group, the quantitative variability of 
tidal flow is significantly increased [39]. Patients treated 
with inhalational corticosteroids, compared to the low-
risk group, showed a normal tidal flow pattern, suggest-
ing that control medication modifies disease activity and 
lung function variability.

These distinctively different effects of COPD and 
asthma on breathing variability were confirmed by a 
study that used the forced oscillation technique [40] 
to determine the variability of respiratory impedance 
and other airway properties. In this study, the temporal 
dynamics of respiratory impedance was used to distin-
guish the asthma and COPD groups [41].

Restrictive lung disease
Variability in breathing was also reduced in patients 
with restrictive lung disease. For instance, during rest-
ing wakefulness, the quantitative variability of tidal vol-
ume was reduced by 56%, inspiratory time was reduced 
by 33%, expiratory time was reduced by 46%, and min-
ute ventilation was reduced by 43% compared to those 
of healthy participants [42]. Concurrently, the corre-
lated variability increased, suggesting that patients with 
restrictive lung disease adopt a constrained breathing 
pattern.

Lung prematurity
Variability in breathing is also influenced by lung matu-
rity. In preterm infants (i.e. born before 37 gestational 
weeks), quantitative variability of tidal volume and end-
tidal expiratory CO2 is significantly lower in patients with 
chronic lung disease of infancy than in patients without 
supplementary oxygen or CPAP [43]. At the postmen-
strual age of 42–50 weeks, the quantitative variability of 
airway resistance is significantly higher in term infants 
than in preterm infants [44]. In preterm born infants, 
lower quantitative variability of tidal volume at a post-
menstrual age of 44  weeks is an important predictor of 
re-hospitalization due to respiratory disease in infancy 
[45].

Perioperative period
Various drugs administered during the perioperative 
period influence breathing control. Propofol decreases 
the respiratory response to hypoxia and hypercarbia [46, 
47] resulting in decreased tidal volume and minute ven-
tilation. Opiates cause dose-dependent hypoventilation 
mainly through a decrease in respiratory rate [48]. This 
respiratory depression is often accompanied by increased 
quantitative tidal volume variability [49]. Midazolam 
reduces minute ventilation mainly through decreases in 
tidal volume and, to a lesser extent, respiratory rate [50]. 
On the other hand, s-ketamine activates breathing with 
an increase in respiratory rate and inspiratory time and 
can antagonise opiate-induced hypoventilation [51–55]. 
The exact effects of these drugs on respiratory variability 
have not been established. The quantitative variability of 
respiratory rate was lower than that of tidal volume dur-
ing the first 24 postoperative hours in patients undergo-
ing major abdominal surgery. These findings suggest that 
the adaptations of alveolar ventilation to metabolic needs 
may be predominately achieved by variations in tidal vol-
ume [56].
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Intensive care
During weaning from mechanical ventilation, variability 
in breathing may be valuable for clinical decision-making 
[57]. Weaning is often preceded by a spontaneous breath-
ing trial (SBT) in which patients are disconnected from 
ventilatory support to assess the adequacy of their res-
piratory function. In patients recovering from a systemic 
inflammatory response syndrome, quantitative variabil-
ity of tidal volume during a 30 min SBT was significantly 
lower in patients requiring reinstitution of non-invasive 
or invasive mechanical ventilation within 48 h [58]. Simi-
lar observations were reported in another study of venti-
lated patients who underwent a 60-min SBT with oxygen 
supplementation. Patients with a lower quantitative vari-
ability of tidal volume during SBT more often require 
ventilatory support after weaning from mechanical ven-
tilation [59].

Interesting findings were reported in a study of patients 
requiring prolonged ventilation (> 7  days) [60]. During 

SBT with CPAP, the quantitative variability of tidal vol-
ume, but not respiratory rate, was higher in patients with 
failed weaning. Concurrently, the informational variabil-
ity was higher in patients with failed weaning, suggesting 
a less predictable breathing pattern [61]. An important 
limitation of this study is that the patients were sup-
ported with a mean of 12 ± 4.6  cm H2O of pressure 
support although the aim was to assess the intrinsic vari-
ability of a patient [62].

The quantitative variability of the respiratory rate 
increases significantly during the reduction or inter-
ruption of sedation with propofol, midazolam, or their 
combination [63]. This restoration of respiratory rate 
variability is greater in patients with lower multiple organ 
dysfunction scores (MODS) [63].

Various studies on the prognostic value of respiratory 
variability are presented in Table  4. These findings are 
interesting; however, we need more data to determine 

Table 4  Clinical predictive value of respiratory variability

CV coefficient of variation, TV tidal volume, IQR interquartile range, OR odds ratio, ICU intensive care unit, PSV pressure support ventilation, PEEP positive end-
expiratory pressure, BT breathing time, PIF peak inspiratory flow, AUC area under the curve, ApEn approximate entropy*P < 0.05

Setting Reference Respiratory measurements Measure of variability

Preterm infants Usemann et al. [45] Full face mask, flowmeter CV With versus without later hospitali‑
zation due to respiratory disease:

TV 0.07 ± 0.03 versus 0.09 ± 0.03*
For each IQR increase in CVVT, OR for 

rehospitalization increased by 2.25

ICU weaning trial with 5 cmH2O 
PSV plus 5 cmH2O PEEP

Bien et al. [58] Ventilator CV Weaning failure versus weaning 
success:

TV 0.18 ± 0.09 versus 0.28 ± 0.15*
BT 0.20 ± 0.12 versus 0.31 ± 0.15*
PIF 0.10 ± 0.05 versus 0.16 ± 0.06*
AUC:
TV 0.75 ± 0.06
PIF 0.80 ± 0.05

ICU spontaneous breathing trial 
without ventilatory support

Wysocki et al. [59] Ventilator CV Extubation failure versus extubation 
success:

TV 0.18 (0.10–0.24) versus 0.25 
(0.14–0.51)*

BT 0.14 (0.10–0.21) versus 0.20 
(0.13–0.53)*

ICU weaning trial, CPAP 5 cmH2O El Khatib et al. [60] Ventilator CV Extubation failure versus extubation 
success:

TV 0.26 ± 0.07 versus 0.09 ± 0.04*
PIF 0.30 ± 0.12 versus 0.12 ± 0.04*

Kolmogorov entropy Extubation failure versus extubation 
success:

0.39 ± 0.09 versus 0.09 ± 0.03*

Dimension 3.39 ± 0.47 versus 1.33 ± 0.07*

ICU weaning trial with 12 ± 4.6 
cmH2O PSV plus 5 cmH2O PEEP

Engeron [61] Ventilator ApEn Extubation failure versus extubation 
success:

TV 0.328 ± 0.049 versus 
0.185 ± 0.027*

RR 0.454 ± 0.022 versus 
0.459 ± 0.013

AUC:
TV 0.74 ± 0.07
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the exact role of variability analyses in guiding clinical 
decisions.

Future research
There is increasing attention for temporal variations of 
physiologic variables, such as heart rate variability [64], 
and the amount of available data on breathing variability 
is increasing. Further research should elucidate the cor-
relation between respiratory variability during the post-
operative period and clinically relevant outcomes, such 
as postoperative morbidity and mortality [65]. Large 
amounts of physiological data are generated during 
anaesthesia and intensive care. Technological advances 
in data analysis, smart learning techniques, and artificial 
intelligence can facilitate the determination of patients 
at risk [66–68]. Integrating complex data from multiple 
sources may lead to improved risk stratification. Recent 
advances allow us to monitor respiratory function in a 
continuous and noninvasive manner [50, 56, 69–82]. This 
is important as postoperative pulmonary complications 
remain a major disease burden [83–87].

Conclusions
The variability of respiration over time may be a prom-
ising tool for identifying patients at risk of pulmonary 
complications. The variability of respiration is complex 
and not fully understood yet. Measuring the variability 
of a single parameter, such as the respiratory rate, does 
not necessarily reflect the variability of the respiratory 
system as a whole. The overall variability of breathing 
is decreased by COPD, restrictive lung disease, chronic 
lung disease of infancy, non-REM sleep, and highly 
demanding cognitive tasks. In contrast, it is increased in 
older adults during the performance of complex arith-
metic tasks during hypoxia and in patients with asthma, 
hypertension, or anxiety disorder. Further research is 
required to elucidate the full potential of respiratory vari-
ability in critical care and anaesthesiology.
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